K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

A B H C

a. Xét \(\Delta AHC\)có \(AH^2+HC^2=AC^2\)(1)

Xét \(\Delta AHB\) có \(AH^2+HB^2=AB^2\)(2)

Từ (1) và (2) \(\Rightarrow HC^2-HB^2=AC^2-AB^2\left(đpcm\right)\)

b. Ta có \(HC=20-HB\Rightarrow\left(20-HB\right)^2-HB^2=AC^2-AB^2\)

\(\Rightarrow400-40HB=15^2-11^2=104\)\(\Rightarrow HB=7,4\Rightarrow HC=12,6\left(cm\right)\)

\(AH=\sqrt{AC^2-HC^2}=\sqrt{15^2-\left(12,6\right)^2}=\frac{6\sqrt{46}}{5}\left(cm\right)\)

20 tháng 7 2018

Hình vẽ:

B H C A

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH+CH=25

hay BH=25-CH(2)

Thay (2) vào (1), ta được:

\(HC\left(25-HC\right)=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)

a: AB=căn 4,5*12,5=7,5cm

AC=căn 8*12,5=10cm

b: HB=(13+5)/2=9cm

HC=13-9=4cm

AB=căn 9*13=3 căn 13cm

AC=căn 4*13=2căn 13cm

 

25 tháng 9 2021

Xét tam giác ABH vuông tại H có:

\(AB^2=BH^2+AH^2\left(Pytago\right)\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2^2}=\sqrt{5}\left(cm\right)\)

Áp dụng HTL trong tam giác ABC vg tại A có đg cao AH:

\(AH^2=BH.HC\)

\(\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{\sqrt{5}}=\dfrac{4\sqrt{5}}{5}\left(cm\right)\)

Ta có: \(AC^2=HC^2+AH^2\left(Pytago\right)\)

\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt[]{2^2+\left(\dfrac{4\sqrt{5}}{5}\right)^2}=\dfrac{6\sqrt{5}}{5}\left(cm\right)\)

Ta có: \(BC=HC+BH=\sqrt{5}+\dfrac{4\sqrt{5}}{5}=\dfrac{5+4\sqrt{5}}{5}\left(cm\right)\)

9 tháng 9 2021

Cần gấp

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow HB=\dfrac{9}{16}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{25}{16}=15\)

\(\Leftrightarrow HC=9.6\left(cm\right)\)

hay HB=5,4(cm)