K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD và ΔCBF có

\(\widehat{BDA}=\widehat{CFB}\left(=90^0\right)\)

\(\widehat{FBC}\) chung

Do đó: ΔABD\(\sim\)ΔCBF(g-g)

b) Xét ΔAHF và ΔCHD có

\(\widehat{AFH}=\widehat{CDH}\left(=90^0\right)\)

\(\widehat{AHF}=\widehat{CHD}\)(hai góc đối đỉnh)

Do đó: ΔAHF\(\sim\)ΔCHD(g-g)

\(\frac{AH}{CH}=\frac{HF}{HD}=\frac{AF}{CD}=k\)(tỉ số đồng dạng)

hay \(AH\cdot HD=HF\cdot CH\)(đpcm)

27 tháng 5 2020

Cảm ơn!Làm đc câu c);d) ko bạn?

9 tháng 5 2018

Bài Làm:

1, Ta có: \(A=x^2-x+1\)

\(=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

= \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Vì: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

\(\Rightarrow A\ge\dfrac{3}{4}\forall x\)

Dấu " = " xảy ra khi: \(x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy Min \(A=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\).

Chúc pạn hok tốt!!!

9 tháng 5 2018

2, P tự vẽ hình nha!!!

a, Xét \(\Delta ABD\)\(\Delta CBF\) có:

\(\widehat{B}\): chung

\(\widehat{ADB}=\widehat{CFB}=90^0\)

\(\Rightarrow\Delta ABD\sim\Delta CBF\)( g.g )

b) Xét \(\Delta AFH\)\(\Delta CDH\) có:

\(\widehat{AFH}=\widehat{CDH}=90^0\)

\(\widehat{AHF}=\widehat{DHC}\) ( Đối đỉnh )

\(\Rightarrow\Delta AFH\sim\Delta CDH\) ( g.g )

\(\Rightarrow\dfrac{AH}{CH}=\dfrac{FH}{HD}\)

\(\Rightarrow AH.HD=CH.HE\)

a: Xét ΔABD vuông tại D và ΔCBF vuông tại F có

góc ABD chung

Do đó: ΔABD đồng dạng vơi ΔCBF

b: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có

góc DHC=góc FHA

Do đó: ΔHDC đồng dạng với ΔHFA

Suy ra: HD/HF=HC/HA

hay \(HD\cdot HA=HC\cdot HF\)

c: Xét ΔBDF và ΔBAC có

BD/BA=BF/BC

góc DBF chung

Do đó:ΔBDF đồng dạng với ΔBAC

12 tháng 5 2021

H A B C D E F K

12 tháng 5 2021

a) Xét \(\Delta ABD\)và \(\Delta CBF\)có:

\(\widehat{ADB}=\widehat{CFB}\left(=90^0\right)\).

\(\widehat{ABC}\)chung.

\(\Rightarrow\Delta ABD~\Delta CBF\left(g.g\right)\)(điều phải chứng minh).

NM
26 tháng 2 2021

A B C D E F H K

a. ta có \(\hept{\begin{cases}\widehat{ADB}=\widehat{CFB}=90^0\\\widehat{ABD}=\widehat{CBF}\end{cases}\Rightarrow\Delta ABD~\Delta CBF\left(g.g\right)}\)

b.Ta có \(\hept{\begin{cases}\widehat{AFH}=\widehat{CDH}=90^0\\\widehat{AHF}=\widehat{CHD}\text{ (đối đỉnh)}\end{cases}\Rightarrow\Delta AHF~\Delta CHD\left(g.g\right)}\)\(\Rightarrow\frac{AH}{HF}=\frac{CH}{HD}\Rightarrow AH.HD=CH.HF\)

c. từ câu a ta có \(\frac{BD}{BF}=\frac{BA}{BC}\Rightarrow\Delta BDF~\Delta BAC\left(c.g.c\right)\)

28 tháng 2 2021

đúng 6 sai 1

1 tháng 5 2018

Từ C kẻ đường thẳng // MN cắt AB ở G, cắt AD tạ K => CK vuông góc với HI
Tam giác CHK có CI và HI là các đường cao nên I là trực tâm => KI là đường cao thứ 3
=> KI vuông góc với CH
Nhưng CH vuông góc với AB (do CF là đường cao t.g ABC)
=> AB//KI hay BG//KI
Tam giác BGC có KI//BG mà IB = IC nên KG = KC hay K là trung điểm CG
Do MN//GC nên theo Talet: MH/GK = AH/AK = HN/KC
=> MH/HN = GK/KC = 1 (Do GK = KC) nên MH = HN (Đpcm)

1 tháng 5 2018

xét tg FÀH và ADB có

<f=<d=90 độ

<a chung

=> tg FAH=ADB

a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

Do đó: ΔAFH đồng dạng với ΔADB

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\)

c: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

Do đo: ΔAEB đồng dạng với ΔAFC

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

Do đó: ΔAEF đồng dạg với ΔABC

a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

Do đó: ΔAFH đồng dạng với ΔADB

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\)

c: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

Do đo: ΔAEB đồng dạng với ΔAFC

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

Do đó: ΔAEF đồng dạg với ΔABC