Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác MAE và tam giác EBC ... =>tam giác MAE = tam giác CBE (c-g-c)
=> AM=BC(...)(1)
và góc M= góc MCB (..)
=> AM//BC(3)
Xét tam giác ADN và tam giác DBC ...=> tam giác ADN = tam giác CDB (c-g-c)
=> AN=CB (...)(2)
và góc N = góc NBC (...)
=> AN//BC(4)
Từ (1) và (2) => AN=AM(5)
Từ(4) và (3) => A , M , N thẳng hàng ( tiên đề Ơ-clit )(6)
Từ (5) và (6) => A là trung điểm của MN
A N M B C E D
a) Xét hai tam giác DBC và DAM có:
DB = DM (gt)
Góc BDC = góc ADM (đối đỉnh)
DA = DC (gt)
Vậy: tam giác DBC = tam giác DAM (c - g - c)
Suy ra: BC = AM (hai cạnh tương ứng) (1)
Xét hai tam giác EAN và EBC có:
EC = EN (gt)
Góc BEC = góc AEN (đối đỉnh)
EA = EB (gt)
Vậy: tam giác EAN = tam giác EBC (c - g - c)
Suy ra: AN = BC (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: AM = AN.
b) Vì tam giác DBC = tam giác DAM (cmt)
=> Góc AMD = góc DBC
Mà hai góc này ở vị trí so le trong
=> AM // BC (3)
Vì tam giác ANE = tam giác EBC (cmt)
=> Góc ANE = góc ECB
Mà hai góc này ở vị trí so le trong
=> AN // BC (4)
Từ (3) và (4) suy ra: AM trùng AN hay M, A, N thẳng hàng (đpcm).
Bạn tự vẽ hình nhé.
a, Xét tam giác DBC và DAM có
Góc ADM = Góc BDC ( đối đỉnh )
DA = DB (gt)
DC = DM ( gt )
Suy ra tam giác DBC = tam giác DAM
=> BC = AM
Chứng minh tương tự với tam giác EAN và ECB ta có AN = BC
Vậy AM = AN ( = BC)
b. Từ tam giác DAM = tam giác DBC theo cmt
=> Góc DAM = Góc DBC (1)
Từ tam giác EAN = tam giác ECB theo cmt
=> Góc EAN = Góc ECB (2)
Cộng vế với vế của (1) và (2) ta được:
\(\widehat{DAM}+\widehat{EAN}=\widehat{DBC}+\widehat{ECB}\\
\Leftrightarrow\widehat{DAM}+\widehat{EAN}+\widehat{BAC}=\widehat{DBC}+\widehat{ECB+}\widehat{BAC}=180^0\)
Vậy M, A, N thẳng hàng
ban co the ve hinh cho minh dc hk minh ve roi nhung van so sai ! hihi
a, xét t.giác BMC và t.giác DMA có:
BM=DM(gt)
\(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đinh)
AM=MC(gt)
=>t.giác BMC=t.giác DMA(c.g.c)
=>\(\widehat{ADM}\)=\(\widehat{MBC}\)mà 2 góc này ở vị trí so le nên AD//BC
b,xét t.giác MAB và t.giác MCD có:
MA=MC(gt)
\(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)
MB=MD(gt)
=>t.giác MAB=t.giác MCD(c.g.c)
=>\(\widehat{MDC}\)=\(\widehat{MBA}\) mà 2 góc này ở vị trí so le nên AB//DC
xét t.giác DAB và t.giác DCB có:
\(\widehat{ADB}\)=\(\widehat{CBD}\)(vì so le)
DB cạnh chung
\(\widehat{ABD}\)=\(\widehat{CDB}\)(vì so le)
=>t.giác DAB=t.giác DCB(g.c.g)
=>DA=DC
=>t.giác ACD cân tại D