Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC
A B C D E F
a/
Ta có: AD //CE => AEC= BAD ( đồng vị) (1)
DAC= ACE ( sole trong) (2)
và AD là tia phân giác của góc BAC => BAD=DAC (3)
Từ (1), (2),(3) => ACE=AEC
b/
Ta có:
ABC + EAC=180 ( kề bù)
và AD là tia phân giác của ABC => DAC= \(\frac{ABC}{2}\)
AF là tia phân giác của EAC => FAC= \(\frac{EAC}{2}\)
Ta có: DAF= DAC+EAC
= \(\frac{ABC}{2}+\frac{EAC}{2}\)
= \(\frac{180}{2}\)
= 90
và AD // CE => DAF=AFE=90 ( sole trong)
=> AF vuông góc với CE