\(\widehat{A}\): \(\widehat{B}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho mik lm lại:

a) Ta có: \(\frac{A}{1}\)=\(\frac{B}{3}\)=\(\frac{C}{5}\)=\(\frac{A+B+C}{1+3+5}\)=\(\frac{180}{9}\)= 20

Vậy A=1.20 = 20 độ

                          B=3.20=60 độ

                          C=5.20=100 độ

b)           Số đo góc ngoài của B là:180-60=120 đọ

              Số đo góc CBD là: 120:2=60 độ

               số đo góc BCD là: 180-100=80 độ

             =>Số đo góc AIB là: 180-60-80=40 đọ

                                Vậy góc ADB bằng 40 độ

Mik ko giỏi hình cho lắm

29 tháng 11 2017

Bạn tham khảo ở đây:

Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath

28 tháng 7 2019

Link nek:

Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath

Bn tham khảo ở đây nha 

~ Rất vui vì giúp đc bn ~

15 tháng 8 2017

Do AD là tia phân giác A => \(\widehat{A_1}=\widehat{A}_2\)

Xét tam giác ADB có:\(\widehat{A_1}+\widehat{ADB}+\widehat{B}=180\)

Hay A1 + 80 + B = 180 => A1 + B = 100 (1)

Do góc ADB + ADC = 180 (Kề bù)

=> 80+ ADC = 180

ADC = 100

Xét tam giác ADC có: \(\widehat{A_2}+\widehat{ADC}+\widehat{C}=180\)

A2 + 100 + C = 180

A2 + C = 80 (2)

Từ 1, 2, có: A2 + C + 20 = A1 + B = 100

=> A1 + C + 20 = A1 + 3/2C

3/2C - C = 20

=> 1/2C= 20

C= 40

Mà B = 3/2 C => B = 3/2 . 40 = 60

Xét tam giác ABC có: A+B+C = 180

hay A + 60+40=180

A= 80

Vậy ...........

2/ 

15 tháng 8 2017

Xét tam giác ABC có : A + B + C = 180 => B+C = 180 - A => B+C = 180 - 80 => B+C = 100 

Do BI;CI lần lượt là phân giác của B; C => B1 = B2 = 1/2 B ; C1 = C2 = 1/2 C 

Xét tam giác IBC có: 

B2+BIC+C2 = 180 

(B2+C2) + BIC = 180

1/2 B + 1/2 C + BIC = 180

1/2 ( B+C) +BIC = 180

hay 1/2 . 100 + BIC = 180

BIC = 180 - 50

BIC = 130

Vậy ...

7 tháng 6 2017

\(\widehat{A}\)=80o

a) Góc A = 1

    Góc B = 3

    Góc C = 5

Học tốt!!!

24 tháng 10 2018

A B C K I 1 2 1 2 3 4

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=110^o\)

\(\hept{\begin{cases}\widehat{B_2}=\frac{1}{2}\widehat{B}\\\widehat{C_1}=\frac{1}{2}\widehat{C}\end{cases}\Rightarrow\widehat{B_2}+\widehat{C_1}=\frac{1}{2}.110^o=55^o\Rightarrow\widehat{BIC}=180^o-\left(\widehat{B_2}+\widehat{C_1}\right)=125^o}\)

Ta có: \(\widehat{C_2}+\widehat{C_3}+\widehat{C_1}+\widehat{C_4}=180^o\)

\(\hept{\begin{cases}\widehat{C_1}=\widehat{C_2}\\\widehat{C_3}=\widehat{C_4}\end{cases}\Rightarrow\widehat{C_2}+\widehat{C_3}=\frac{180^o}{2}=90^o\Rightarrow\widehat{ICK}=90^o}\)

Suy ra \(\widehat{BIC}=\widehat{ICK}+\widehat{BKC}\Rightarrow\widehat{BKC}=125^o-90^o=35^o\)