K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

a) Gọi O là trung điểm của BC.

Theo tính chất trung tuyến ứng với cạnh huyền ta có:

EO=12BC;DO=12BC.EO=12BC;DO=12BC.

Suy ra OE=OD=OB=OC(=12BC)OE=OD=OB=OC(=12BC)

Do đó 4 điểm B, C, D, E cùng thuộc đường tròn (O) đường kính BC.

b) Xét đường tròn nói ở câu a), BC là đường kính, DE là một dây không qua tâm, do đó DE<BC.



18 tháng 12 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Gọi M là trung điểm của BC.

Để học tốt Toán 9 | Giải bài tập Toán 9

=> ME = MB = MC = MD

Do đó bốn điểm B, E, D, C cùng thuộc đường tròn tâm M. (đpcm)

b) Trong đường tròn tâm M nói trên, ta có DE là dây, BC là đường kính nên DE < BC.

28 tháng 4 2021

Lời giải chi tiết

a) Gọi OO là trung điểm của BC⇒OB=OC=BC2.BC⇒OB=OC=BC2.   (1)

Vì DODO là đường trung tuyến của tam giác vuông DBCDBC.

Theo tính chất trung tuyến ứng với cạnh huyền, ta có:  

             OD=12BCOD=12BC                                          (2)

Từ (1) và (2) suy ra OD=OB=OC=12BCOD=OB=OC=12BC

Do đó ba điểm B, D, CB, D, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Lập luận tương tự, tam giác BEC vuông tại E có EO là đường trung tuyến ứng với cạnh huyền BC nên OE=OB=OC=12BCOE=OB=OC=12BC

Suy ra ba điểm B, E, CB, E, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Do đó 4 điểm B, C, D, EB, C, D, E cùng thuộc đường tròn (O)(O) đường kính BCBC. 

b) Xét đường (O;BC2)(O;BC2), với BCBC là đường kính.

Ta có DEDE là một dây cung không đi qua tâm nên  ta có BC>DEBC>DE ( vì trong một đường tròn, dây lớn nhất là đường kính).

16 tháng 8 2021

a) Gọi \mathrm{M}M là trung điểm của \mathrm{BC}BC.

Ta có EM=\dfrac{1}{2} BC, DM=\dfrac{1}{2} BCEM=21BC,DM=21BC.

Suy ra ME=MB=MC=MDME=MB=MC=MD

do đó B, E, D, CB,E,D,C cùng thuộc đường tròn đường kính BCBC.

b) Trong đường tròn nói trên, DEDE là dây, BCBC là đường kính nên DE<BCDE<BC

11 tháng 8 2018

1. Xét tam giác BEC vuông tại E có:

góc BEC = 90 độ

=> B,E,C thuộc vào đg tròn đg kính BC (1)

Xét tam giác BDC có

góc BDC = 90 độ

=> B, D, C thuộc đg tròn đg kính BC (2)

(1)(2)=> B, E, D, C thuộc vào cùng 1 đg tròn

2. Xét đường tròn tâm O có

CD là dây ( dựa vào 1)

Lai có I là trung điểm của CD

=> OI vuông góc với ED( đl )

14 tháng 12 2017

Gọi O là trung điểm của BC.

Xét tam giác BEC vuông tại E có EO là đường trung tuyến nên OE=OC=OB (1)

 Xét tam giác BCD vuông tại D có Do là đường trung tuyến nên OD=OC=OB (2)

Từ (1) và (2) Vậy OB=OD=OE=OC hay B, D, E ,C cùng thuộc một đường tròn. (đpcm)

22 tháng 3 2021

a/ Ta có

\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)

=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB

b/ Ta có

\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)

\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)

\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)

Mà \(AH\perp BC\Rightarrow DF\perp BC\)

c/

Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.

Nối I với H, D với H 

Xét \(\Delta HDF\) và \(\Delta HEI\) ta có

\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)

\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)

Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)

\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)

\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\)  => tg HDF đồng dạng với tg HEI

\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)

15 tháng 12 2020