Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng chứng minh được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)
Ta có:
\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)
Áp dụng (1), ta được:
\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)
\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)
Chúng minh tương tự, ta được:
\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)
Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).
\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)
Từ (2), (3) và (4), ta được:
\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)
\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)
\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)
Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)
\(a,b,c>0;ab+ac+bc=abc\)
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z>0\)=> x + y + z = 1
Ta có:\(P=\frac{1}{bc\left(1+\frac{1}{a}\right)}+\frac{1}{ac\left(1+\frac{1}{b}\right)}+\frac{1}{ab\left(1+\frac{1}{c}\right)}\)
Viết lại \(P=\frac{yz}{1+x}+\frac{xz}{1+y}+\frac{xy}{1+z}\)
\(=\frac{yz}{\left(x+z\right)+\left(x+y\right)}+\frac{xz}{\left(x+y\right)+\left(z+y\right)}+\frac{xy}{\left(x+z\right)+\left(y+z\right)}\)
\(\le\frac{1}{4}\left(\frac{yz}{x+z}+\frac{yz}{x+y}\right)+\frac{1}{4}\left(\frac{xz}{x+y}+\frac{xz}{y+z}\right)+\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)
\(\le\frac{1}{4}\left(\frac{yz+xy}{x+z}+\frac{yz+xz}{x+y}+\frac{xz+xy}{y+z}\right)=\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)
Dấu "=" xảy ra <=> x = y = z = 1/3 <=> a= b = c = 3
max P = 1/4 tại a = b = c = 3
CÓ: \(a^2+b^2=c^2.\)Nên ta có:
\(P=\frac{\left(a+b\right)\left(a+\sqrt{a^2+b^2}\right)\left(b+\sqrt{a^2+b^2}\right)}{ab\sqrt{a^2+b^2}}\)
\(=\frac{a+b}{\sqrt{a^2+b^2}}.\frac{a+\sqrt{a^2+b^2}}{a}.\frac{b+\sqrt{a^2+b^2}}{b}\)
\(=\left(\sqrt{\frac{a^2}{a^2+b^2}}+\sqrt{\frac{b^2}{a^2+b^2}}\right).\left(1+\sqrt{\frac{a^2+b^2}{a^2}}\right)\left(1+\sqrt{\frac{a^2+b^2}{a^2}}\right)\).
Đặt: \(x^2=\frac{a^2}{a^2+b^2};y^2=\frac{b^2}{a^2+b^2}\Rightarrow x^2+y^2=1\). Ta có:
\(P=\left(x+y\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}+2\)\(\ge4\sqrt{x.y.\frac{1}{x}.\frac{1}{y}.\frac{x}{y}.\frac{y}{x}}+2=6.\)
Vậy GTNN của P = 6.Dấu bằng xảy ra khi x = y =1 hay tam giác ABC vuông cân.
Min = 6