K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACI vuông tại C và ΔAHB vuông tại H có

góc CAI=góc HAB

=>ΔACI đồng dạng với ΔAHB

b: Xét ΔHBI và ΔHAB có

góc HBI=góc HAB

góc H chung

=>ΔHBI đồng dạng với ΔHAB

=>HB/HA=HI/HB

=>HB^2=HA*HI

c: CD/DA=CK/KA=CB/CA

NV
8 tháng 4 2023

a.

Xét hai tam giác AIC và ABH có:

\(\left\{{}\begin{matrix}\widehat{CAI}=\widehat{BAH}\left(\text{Ax là phân giác}\right)\\\widehat{ACI}=\widehat{AHB}=90^0\left(gt\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta AIC\sim\Delta ABH\left(g.g\right)\) (1)

b.

Xét hai tam giác AIC và BIH có:

\(\left\{{}\begin{matrix}\widehat{AIC}=\widehat{BIH}\left(\text{đối đỉnh}\right)\\\widehat{ACI}=\widehat{BHI}=90^0\end{matrix}\right.\)  \(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\) (2)

(1);(2) \(\Rightarrow\Delta ABH\sim\Delta BIH\)

\(\Rightarrow\dfrac{AH}{BH}=\dfrac{BH}{IH}\Rightarrow BH^2=HI.HA\)

c.

Áp dụng định lý phân giác trong tam giác ACK: \(\dfrac{CD}{DA}=\dfrac{CK}{AK}\) (3)

Xét hai tam giác ABC và ACK có:

\(\left\{{}\begin{matrix}\widehat{CAB}\text{ chung}\\\widehat{BCA}=\widehat{CKA}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta ABC\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{BC}{CK}=\dfrac{AC}{AK}\Rightarrow\dfrac{BC}{AC}=\dfrac{CK}{AK}\) (4)

(3);(4) \(\Rightarrow\dfrac{CD}{DA}=\dfrac{BC}{AC}\)

6 tháng 2 2022

a) Xét tam giác AIC và tam giác BIH có:

\(\widehat{AIC}=\widehat{BIH}\)(đối đỉnh)

\(\widehat{ACI}=\widehat{BHI}=90^0\)

\(\Rightarrow\Delta AIC\sim\Delta BIH\left(g.g\right)\)

Câu b em xem lại đề nhé ! Sao AC=15cm và AC=25cm được nhỉ ?

9 tháng 5 2017

a, Xét tg HBA và tgABC:

Có: góc B chung

H=A=90

=> tg HBA đồng dạng ABC (gg)

b, Vì tg BHA đồng dạng tg ABC:

=>AB/HB=BC/AB

=>đpcm.

c, Áp dụng tính chất tia phân giác:

=>AB/AC=BI/IC=>BI/AB=IC/AC

Áp dụng tính chất dãy tỉ số bằng nhau:

BI/AB=IC/AC=BI+IC/AB+AC=BC/AB+AC=10/6+8=5/7

Suy ra: BI=5/7.6=4,3

IC=5/7.8=5,7

Nhớ k nha.

2 tháng 4 2018

a)  Xét \(\Delta ABC\) và      \(\Delta HBA\)  có:

\(\widehat{BAC}=\widehat{AHB}=90^0\)

\(\widehat{B}\)   chung

suy ra:   \(\Delta ABC~\Delta HBA\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)

\(\Rightarrow\)\(AB^2=HB.BC\)

\(\Leftrightarrow\)\(6^2=HB.10\)

\(\Rightarrow\)\(HB=3,6\)

4 tháng 4 2018

bn ơi mk cần câu c cơ

a: Xét ΔACI vuông tại C và ΔBHI vuông tại H có

\(\widehat{AIC}=\widehat{BIH}\)(hai góc đối đỉnh)

Do đó: ΔACI~ΔBHI

b: Ta có: ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=25^2-15^2=400\)

=>\(CB=\sqrt{400}=20\left(cm\right)\)

Xét ΔABC có AI là phân giác

nên \(\dfrac{CI}{CA}=\dfrac{BI}{BA}\)

=>\(\dfrac{CI}{15}=\dfrac{BI}{25}\)

=>\(\dfrac{CI}{3}=\dfrac{BI}{5}\)

mà CI+BI=CB=20cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{CI}{3}=\dfrac{BI}{5}=\dfrac{CI+BI}{3+5}=\dfrac{20}{8}=2,5\)

=>\(CI=2,5\cdot3=7,5\left(cm\right)\)

c: Ta có: ΔACI~ΔBHI

=>\(\widehat{CAI}=\widehat{HBI}\)

mà \(\widehat{CAI}=\widehat{BAH}\)

nên \(\widehat{HBI}=\widehat{HAB}\)

Xét ΔHBI vuông tại H và ΔHAB vuông tại H có

\(\widehat{HBI}=\widehat{HAB}\)

Do đó: ΔHBI~ΔHAB

=>\(\dfrac{HB}{HA}=\dfrac{HI}{HB}\)

=>\(HB^2=HI\cdot HA\)

5 tháng 5 2021

Bài 1 :

a, Xét tam giác BDA và tam giác KDC có:     

 Góc BDA= Góc KDC(đối đỉnh)

 Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

b, 

Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)

Xét tam giác DBK và tam giác DAC có:   

  Góc BDK= Góc DAC(đối đỉnh)

\(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

Bài 2 :

a) Xét tam giác ABH và tam giác AHD có:

\(\widehat{A}chung\)

\(\widehat{AHB}=\widehat{ADH}=90^o\)

 tam giác ABH đồng dạng với tam giác AHD (g-g)

b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)

⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)

Tam giác AEH đồng dạng với tam giác HEC 

\(\widehat{ACH}=\widehat{AHE}\) (CM trên)

\(\widehat{AEH}=\widehat{HEC}\) (= 900)

\(\frac{AE}{HE}=\frac{EH}{EC}\)\(AE\cdot EC=EH\cdot EH=EH^2\)

c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:

\(\widehat{A}\) chung

\(\widehat{ADC}=\widehat{AEB}=90^O\)

 \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)

Xét tam giác DBM và tam giác ECM có:

\(\widehat{ACD}=\widehat{ABE}\) (CM trên)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

 tam giác DBM đồng dạng với tam giác ECM (g-g)

 Bài 3 :

Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu