Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ
a) Xét ΔAMB và ΔEMC
AM=ME (giả thiết)
BM=MC (AM là trung tuyến BC)
∠AMB=∠EMC (đối đỉnh)
⇒ΔAMB=ΔEMC (c.g.c)
b)ΔAMB=ΔEMC
⇒AB=CE (hai cạnh tương ứng)
Mà AC>AB (Tính chất )
⇒AC>CE
c)Ta có MB+MC=BC
Mà MB=MC
⇒MB=MC=BC:2=24:2=12dm
Xét ΔAMB vuông tại B,ta có:
AM^2 =AB^2 +MB^2
20^2=AB^2+12^2
⇒AB^2=20^2-12^2
=400-144
AB^2=256
AB=16dm
a) Xét tg AMB và EMC có :
MA=ME(gt)
MB=MC(gt)
\(\widehat{AMB}=\widehat{CME}\left(đđ\right)\)
=> Tg AMB=EMC(c.g.c) (đccm)
b) Do tg AMB=EMC (cmt)
\(\Rightarrow\widehat{B}=\widehat{ECM}\)
=> AB//EC
\(\Rightarrow\widehat{BAC}=\widehat{ECA}=90^o\)
\(\Rightarrow AC\perp CE\left(đccm\right)\)
c) Do tg ABM=CEM (cmt)
\(\Rightarrow AM=MC=\frac{BC}{2}\)
Hay nói cách khác : BC=2AM (đccm)
#H
a) ΔABM = ΔECM
Xét ΔABM và ΔECM có
MB = MC (do AM là trung tuyến)
∠ AMB = ∠ EMC (đối đỉnh)
MA = ME (gt) ⇒ ΔABM = ΔECM (c – g – c)
b) AC > EC
Ta có: ΔABC vuông tại B ⇒ AC > AB
Mà AB = EC (do ΔABM = ΔECM) ⇒ AC > EC
c) ∠BAM = ∠CAM
Ta có: AC > EC ⇒ ∠CEM = ∠CAM mà ∠CEM = ∠BAM
⇒ ∠BAM = ∠CAM
d) Tính AB = ?
Ta có: BM = ½ BC (t/c đường trung tuyến) ⇒ BM = 12dm
Trong vuông ABM có:
A B M E C
a) Xét ΔABM và ΔECM có:
MB = MC (do AM là trung tuyến)
∠ AMB = ∠ EMC (đối đỉnh)
MA = ME (gt) ⇒ ΔABM = ΔECM (c – g – c)
b) Ta có: ΔABC vuông tại B ⇒ AC > AB
Mà AB = EC (vì ΔABM = ΔECM) ⇒ AC > EC
c)Ta có: AC > EC ⇒ ∠CEM = ∠CAM mà ∠CEM = ∠BAM
⇒ ∠BAM = ∠CAM
d) Ta có: BM = ½ BC (t/c đường trung tuyến) ⇒ BM = 12dm
Trong vuông ABM có:
Xét tam giác AMB và tam giác EMC có
BM = MC ( gt) ; AM = ME ( gt ) ; ^AMB = ^ EMC ( đ đ )
=> tam giác AMB = tam giác EMC ( c-g-c )
=> AB = CE
Xét tam giác vuông ABC có
AC là cạnh huyền AB; BC là 2 cgv
=> AC > AB
Mà AB = CE
=> AC > CE
A B C E M
a) Xét t/giác AMB và t/giác EMC
có MA = ME (gt)
BM = MC (gt)
\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)
=> t/giác AMB = t/giác EMC (c.g.c)
b) Do t/giác AMB = t/giác EMC (cmt)
=> \(\widehat{BAM}=\widehat{MEC}\)(2 góc t/ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CE
=> \(\widehat{A}+\widehat{C}=180^0\) (trong cùng phía)
mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CE
c) Xét t/giác ABC vuông tại A có AM là đường trung tuyến
=> AM = BM = MC = 1/2BC
=> BC = 2AM
HD C2: CM t/giác ABC = t/giác CEA (C.g.c)
=> BC = EA (2 cạnh t/ứng
=> 1/2BC = 1/2EM
=> 1/2BC = MA (vì EM = MA = 1/2EM)
=> AM = 2BC