Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
a) Xét △BEA và △BAC có :
\(\widehat{E}=\widehat{A}\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\)△BEA ~ △BAC (g.g)
b) +) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)
\(\Rightarrow AB^2=BE.BC\)
\(\Rightarrow BE=1,8\left(cm\right)\)
+) Áp dụng định lý Pythagoras vào △ABC, ta được :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\)
+) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)
\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)
c) Xét △BAI và △BEK có :
\(\widehat{A}=\widehat{E}=\left(90^o\right)\)
\(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)
\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)
\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)
\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)
d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC
\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)
Vì Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)
\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
a, Xté tứ giác AMIN có :
BMI=MAN=INA=900
=> Tứ giác AMIN là hình chữ nhật
b, Xét ΔABC
có : BI=IC ( gt)
IN // AM ( gt )
=> AN=NC
mà IN=ND
=> Tứ giác ADCI là hình bình hành (1)
mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi
c, Kẻ IQ // BK (QϵCD)
ΔBKC có :
BI = IC (gt)
IQ // BK (cách dựng )
cm tương tự : DK=KQ
=> DK=KQ=QC
=> DK/DC = 1/3
a) AEBF là hình thang vuôngvì EF là đường trung bình \(\Rightarrow EF//AB\)
b) Xét hai tam giác vuông ABK và EIK có góc EKI = góc AKB nên \(\Delta ABK\approx\Delta IEK\)
\(\Rightarrow\frac{AB}{BK}=\frac{EI}{EK}\)
c) Xét \(\Delta AKB=\Delta AKH\left(ch-gn\right)\)
+ AK chung
+ Góc BAK = góc HAK
Vậy BK = HK
Gọi giao điểm của HK và AK là P
Xét \(\Delta PBK=\Delta PHK\left(c.g.c\right)\)
+ PK Chung
+ BK = HK
+ Góc PKB = góc PKH
Suy ra góc PBK = góc PHK
Ta có
\(\hept{\begin{cases}\widehat{PBK}+\widehat{ABP}=90^0\\\widehat{BAP}+\widehat{ABP}=90^0\end{cases}}\Rightarrow\widehat{PBK}=\widehat{BAP}=\widehat{IAF}\left(1\right)\)
\(\hept{\begin{cases}\widehat{EKI}=\widehat{PKB}=\widehat{PKH}\\\widehat{EIK}+\widehat{EKI}=90^0\end{cases}}\)
Mà \(\hept{\begin{cases}\widehat{PKH}+\widehat{PHK}=90^0\\\widehat{EIK}+\widehat{PKH}=90^0\end{cases}\Rightarrow}\widehat{BHK}=\widehat{EIK}\left(2\right)\)
Từ (1) và (2) ta có đpcm vì hai tam giác BKH và AFI đều là hai tam giác cân có hai góc ở đáy bằng nhau
Nên hai tam giác trên đồng dạng
d)