Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đã đăng lại câu hỏi dễ hiểu hơn theo link này rồi ạ: https://olm.vn/hoi-dap/detail/1306671964747.html?auto=1
a: Xét ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
\(\widehat{BAD}=\widehat{HAD}\)
Do đó: ΔABD=ΔAHD
Suy ra: AB=AH; DB=DH
=>AD là đường trung trực của BH
hay AD⊥BH
b: Xét ΔDAC có \(\widehat{DCA}=\widehat{DAC}\)
nên ΔDAC cân tại D
mà DH là đường cao
nên H là trung điểm của AC
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
=>AB=AD
mà góc B=60 độ
nên ΔABD đều
b: góc CAD=90-60=30 độ=góc HAD
=>AD là phân giác của góc HAC
=>DH/AH=DC/AC
mà AH<AC
nên DH<DC
hình tự kẻ:33333
a) xét tam giác BAD và tam giác BHD có
B1=B2(gt)
BD chung
BAD=BHD(=90 độ)
=> tam giác BAD= tam giác BHD(ch-gnh)
=> AB=BH( hai cạnh tương ứng)
b) từ tam giác BAD =tam giácBHD=> AD=AH( hai cạnh tương ứng)
áp dụng điịnh lý pytago vào tam giác vuông HDC=> DC^2=DH^2+HC^2
=> DC^2>DH^2
=>DC^2>AD^2
=> DC>AD
c) xét tam giác BAC và tam giác BHKcó
AB=HB(cmt)
BAC=BHK(=90 độ)
B chung
=> tam giác BAC= tam giác BHK(gcg)
=> AK=AC( hai cạnh tương ứng)
=> tam giác BKC cân B
a/
Xét tg vuông ABD và tg vuông AHD có
Canh huyền AD chung
\(\widehat{BAD}=\widehat{HAD}=30^o\)
\(\Rightarrow\Delta ABD=\Delta AHD\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau thì bằng nhau)
\(\Rightarrow DB=DH\)
\(\Rightarrow AB=AH\Rightarrow\Delta ABH\) cân tại A \(\Rightarrow AD\perp BH\) (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
b/
Xét tg ABC có
\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-60^o-90^o=30^o\)
Xét tg ADC có
\(\widehat{DAC}=\widehat{DCA}=30^o\Rightarrow\Delta ADC\) cân tại D
\(\Rightarrow HA=HC\) (Trong tg cân đường cao (DH) đồng thời là đường trung trực)
a) Trong tam giác ABC có AB<AC
=>góc ACB< góc ABC
Có tam giác ABH vuông tại H
=>HAB+ABH=90 độ )
=>60 độ+ABH=90 độ
ABH=30 độ
b) AD là tia phân giác của góc A
=>EAI= IAB=60độ:2= 30 độ
Xét tam giác vuông BHA và tam giác vuông AIB có
Cạnh huyền AB chung
ABH=IAB=30 độ
=> tam giác AIB=tam giác BHA ( cạnh huyền- góc nhọn)
c) Xét tam giác vuông AIE và tam giác vuông AIB có
Cạnh AI chung
EAI=IAB=30 độ
=> tam giác AIE= tam giác AIB ( cạnh huyền- góc nhọn)
=>AE=AB ( 2 cạnh tương ứng)
=> Tam giác ABE là tam giác cân và có EAB=60 độ
=> Tam giác ABE là tam giác đều
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có
AB=AE
EAD=DAB=30 độ
Cạnh AD chung
=> tam giác ADB= tam giác ADC (c.g.c)
=> DB=DE (1) và góc ABD=góc AED
do đó CBx=CED( cùng kề bù với 2 góc bằng nhau)
CBx>góc C ( CBx là góc ngoài của tam giác ABC)
=> CED>C, do đó DC>DE (2)
Từ (1) và (2) =>DC>DB
B A C D H I
Cm : a) Xét t/giác ABD và t/giác AHD
có: \(\widehat{B}=\widehat{AHD}=90^0\) (gt)
AD : chung
\(\widehat{BAD}=\widehat{HAD}\) (gt)
=> t/giác ABD = t/giác AHD (ch - gn)
=> DB = BH (2 cạnh t/ứng)
Gọi I là giao điểm của AD và BH
Xét t/giác BDI và t/giác HDI
có BD = HD (gt)
\(\widehat{BDI}=\widehat{HDI}\)(vì t/giác ABD = t/giác AHD)
DI : chung
=> t/giác BDI = t/giác HDI (c.g.c)
=> \(\widehat{BID}=\widehat{HID}\)(2 góc t/ứng)
Mà \(\widehat{BID}+\widehat{HID}=180^0\) (kể bù)
=> \(\widehat{BID}=\widehat{HID}=90^0\)
=> BH \(\perp\)AD
b) Xét t/giác ABC có \(\widehat{B}\) = 900 => \(\widehat{A}+\widehat{C}=90^0\) => \(\widehat{C}=90^0-\widehat{A}=90^0-60^0=30^0\)
AD là tia p/giác của góc A => \(\widehat{BAD}=\widehat{DAC}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)
=> \(\widehat{C}=\widehat{DAC}=30^0\) => t/giác ADC cân tại D
=> AD = DC => AH = HC (quan hệ giữa đường và hình chiếu)
c) Xét t/giác ABD có : AB < AD (cạnh góc vuông < cạnh huyền)
Mà AD = DC (cmt)
=> DC > AB