Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$|\overrightarrow{BC}|=BC=\sqrt{AB^2+AC^2}=\sqrt{(3a)^2+(4a)^2}=5a$ theo định lý Pitago.
a: vecto AB=(-7;1)
vecto AC=(1;-3)
vecto BC=(8;-4)
b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)
\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)
\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)
Để tính độ dài AM, ta có thể sử dụng định lý Pythagoras. Định lý này cho biết rằng trong một tam giác vuông, bình phương của độ dài cạnh huyền (đường chéo dài nhất) bằng tổng bình phương của độ dài hai cạnh góc vuông.
Trong trường hợp này, ta có AB = AC = a và BM = BC/√3. Để tìm độ dài AM, ta cần tìm độ dài cạnh còn lại của tam giác ABC.
Áp dụng định lý Pythagoras, ta có: AM^2 + BM^2 = AB^2
Thay các giá trị đã biết vào, ta có: AM^2 + (BC/√3)^2 = a^2
Giải phương trình trên, ta có thể tính được độ dài AM.
b: \(\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=\left|\dfrac{\overrightarrow{AC}}{2}\right|=\dfrac{5}{2}a\)
\(a,\overrightarrow{AB}=\left(2;10\right)\)
\(\overrightarrow{AC}=\left(-5;5\right)\)
\(\overrightarrow{BC}=\left(-7;-5\right)\)
\(b,\) Thiếu dữ kiện
\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)
\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)
Ta có :
\(BC^2=AB^2+AC^2\left(Pitago\right)\)
\(\Leftrightarrow BC^2=\dfrac{4}{9}BC^2+AC^2\)
\(\Leftrightarrow BC^2-\dfrac{4}{9}BC^2=AC^2\)
\(\Leftrightarrow\dfrac{5}{9}BC^2=AC^2\)
\(\Leftrightarrow BC^2=\dfrac{9}{5}AC^2=\dfrac{9}{5}.\left(12a\right)^2\)
\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{3}{\sqrt[]{5}}.12a=\dfrac{36a\sqrt[]{5}}{5}\)
\(\Rightarrow\left|\overrightarrow{AB}\right|=AB=\dfrac{2}{3}.\dfrac{36a\sqrt[]{5}}{5}=\dfrac{24a\sqrt[]{5}}{5}\)