Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC và ΔCDM có
\(\widehat{ABC}=\widehat{CDM}\)(hai góc so le trong, MD//AB)
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔCDM(g-g)
Lời giải:
a) Ta có:
{ME∥ACAB⊥AC⇒ME⊥AB⇒∠MEA=900{ME∥ACAB⊥AC⇒ME⊥AB⇒∠MEA=900
{MF∥ABAB⊥AC⇒MF⊥AC⇒∠MFA=900{MF∥ABAB⊥AC⇒MF⊥AC⇒∠MFA=900
Tam giác ABCABC vuông tại AA nên ∠EAF=900∠EAF=900
Tứ giác AFMEAFME có 3 góc ∠MEA=∠MFA=∠EAF=900∠MEA=∠MFA=∠EAF=900 nên là hình chữ nhật.
b)
Vì ME∥AC,MF∥ABME∥AC,MF∥AB nên áp dụng định lý Thales ta có:
MEAC=BMBC;MFAB=CMBCMEAC=BMBC;MFAB=CMBC
Chia hai vế: ⇒MEMF.ABAC=BMCM⇒MEMF.ABAC=BMCM
Vì AFMEAFME là hình chữ nhật (cmt) nên để nó là hình vuông cần có ME=MFME=MF
⇔MEMF=1⇔ABAC=BMCM⇔MEMF=1⇔ABAC=BMCM
⇔ABAB+AC=BMBM+CM=BMBC⇔ABAB+AC=BMBM+CM=BMBC
Vậy điểm M nằm trên BC sao cho BMBC=ABAB+ACBMBC=ABAB+AC thì AFMEAFME là hình vuông.
a
Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)
\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)
Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)
Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)
b
Hạ \(NH\perp BC;MG\perp BC\)
Áp dụng định lý Pythagoras vào tam giác ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)
Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND
Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )
Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.
Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:(
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )