Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AD=DC=6/2=3cm
BD=căn 8^2+3^2=căn 73(cm)
DM là phân giác
=>BM/BD=MA/AD
=>BM/căn 73=MA/3=(BM+MA)/(căn 73+3)=8/căn 73+3
=>BM=8*căn 73/3+căn 73(cm)
b: Xét ΔBAD có DM là phân giác
nen BM/MA=BD/DA=BD/DC
Xét ΔBDC có DN là phân giác
nên BN/NC=BD/DC
=>BM/MA=BN/NC
=>MN//AC
c: Xét tứ giác MNCA có MN//CA và góc MAC=90 độ
nên MNCA là hình thang vuông
b) Xét ΔBDA có
DM là đường phân giác ứng với cạnh AB
nên \(\dfrac{BM}{MA}=\dfrac{BD}{DA}\)(1)
Xét ΔBDC có
DN là đường phân giác ứng với cạnh BC
nên \(\dfrac{BN}{NC}=\dfrac{BD}{DC}\)(2)
Ta có: D là trung điểm của AC(gt)
nên DA=DC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{BM}{MA}=\dfrac{BN}{NC}\)
hay MN//AC(Định lí Ta lét đảo)
c) Xét tứ giác MNCA có MN//AC(cmt)
nên MNCA là hình thang
mà \(\widehat{MAC}=90^0\)
nên MNCA là hình thang vuông
Bài 1:
a: BC=17cm
AH=120/7(cm)
b: Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
Suy ra: AH=MN=120/7(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nen \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Theo định lý pytago =>DC=\(\sqrt{CB^2+DB^2}\)=\(\sqrt{15^2+20^2}\)=25
\(\widehat{HBD}\)+ \(\widehat{D}\)=900 \(\widehat{C}\)+\(\widehat{D}\)=900 => \(\widehat{C}\)=\(\widehat{HBD}\) =>\(\Delta\)HBD~\(\Delta\)BCD(gg)
=>\(\frac{HB}{BC}\)=\(\frac{HD}{BD}\)<=> \(\frac{HB}{15}\)=\(\frac{HD}{20}\)(1) Mặt khác: BC*BD=CD*BH=>BH=15*20/25=12
Thay vào (1) =>HD=12/15 *20=16 =>HC =9
ABCD là hình thang cân=> BH cũng chính là đường cao của hình thang
Đáy nhỏ AB dài là: 25 - 9 - 9 =7
Diện tích hình thang ABCD là:(7+25)*12/2=192(dvdt)
1.Giải:
a. Vì tam giác ABC vuông tại A và AM = \(\frac{1}{2}\)BC
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của cạnh BC
=> AM = BM = \(\frac{1}{2}\)BC
Vì AM = BM => Tam giác ABM cân tại M
b. Vì N là trung điểm của AB
=> MN là đường trung tuyến ứng với cạnh AB của tam giác ABM
Mà tam giác ABM cân tại M ( câu a )
=> MN đồng thời là đường cao xuất phát từ M của tam giác ABM
=> \(MN\perp AB\)
Do đó: MN//AC (cùng vuông góc với AB)
=> MNAC là hình thang
Mặt khác: \(\widehat{NAC}\)= \(^{90^0}\)(gt)
=> Tứ giá MNAC là hình thang vuông.