Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tg ABD và tg EBD có:
góc ABD=góc EBD(BD là tia phân giác của góc B)
BD là cạnh chung
AB=BE(gt)
suy ra tg ABD=tg EBD
b)ta có: tg ABD=tg EBD(cmt)
suy ra góc BAD=góc DEB=90 độ
suy ra DE vuông góc với BC
c)ta có: AB=EB(gt)
nên tg ABE cân tại B
mà BD là đường phân giác của góc B(gt)
suy ra BD là đường trung trực của tg ABE
suy ra BD là đường trung trực của AE
a, Xét tam giác ABD và tam giác EBD có
AB=BE(gt)
góc ABD = góc EBD (gt)
BD chung
=> tam giác ABD = tam giác EBD (c.g.c)
b, theo câu a, tam giác ABD = tam giác EBD (c.g.c)
=> góc BED= góc BAD = 900
c, Gọi giao điểm của BD và AE là M
Xét tam giác ABI và tam giác EBI có
AB=EB (gt)
góc ABI= góc EBI(gt)
BI chung
=> tam giác ABI= tam giác EBI (c.g.c)
=> BIA=BIE
Mà BIA+BIE=180 độ nên BIA= 90 độ => bd vuông góc với ae
Ta có hình vẽ:
A B C D E H
a) Vì AD là phân giác của ABC nên ABD = DBC
Xét Δ ABD và Δ EBD có:
AB = BE (gt)
ABD = EBD (cmt)
BD là cạnh chung
Do đó, Δ ABD = Δ EBD (c.g.c) (đpcm)
b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)
\(\Rightarrow DE\perp BE\) hay \(DE\perp BC\left(đpcm\right)\)
c) Gọi H là giao điểm của AE và BD
Xét Δ ABH và Δ EBH có:
AB = EB (gt)
ABH = EBH (câu a)
BH là cạnh chung
Do đó, Δ ABH = Δ EBH (c.g.c)
=> AH = EH (2 cạnh tương ứng) (1)
và AHB = EHB (2 góc tương ứng)
Mà AHB + EHB = 180o (kề bù) nên AHB = EHB = 90o
\(\Rightarrow BH\perp AE\) hay \(BD\perp AE\left(2\right)\)
Từ (1) và (2) => BD là đường trung trực của AE (đpcm)
Ta có hình vẽ:
A D B C E
Gọi BD cắt AE tại M
a/ Xét tam giác ABD và tam giác EBD có:
BD: cạnh chung
BA = BE (GT)
\(\widehat{ABD}\)=\(\widehat{DBE}\) (GT)
=> tam giác ABD = tam giác EBD (c.g.c)
b/ Ta có: tam giác ABD = tam giác EBD (câu a)
=> \(\widehat{A}\)=\(\widehat{E}\)=900 (2 góc tương ứng)
=> DE \(\perp\)BC (đpcm)
c/ Xét tam giác ABM và tam giác EBM có:
BM: cạnh chung
\(\widehat{ABM}\)=\(\widehat{MBE}\)(GT)
\(\widehat{A}\)=\(\widehat{E}\)=900
Trường hợp cạnh huyền góc nhọn
=> tam giác ABM = tam giác EBM (g.c.g)
=> \(\widehat{AMB}\)=\(\widehat{EMB}\) (2 góc tương ứng)
Mà \(\widehat{AMB}\)+\(\widehat{EMB}\)=1800
=> \(\widehat{AMB}\)=\(\widehat{EMB}\)=900
=> BD \(\perp\)AE
Mà BM là phân giác góc B
=> BD là trung trực của AE (đpcm)
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
Bạn tự vẽ hình nha ^^
a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có
\(AB=EB\left(GT\right)\)(1)
\(\widehat{BAD}=\widehat{BED}=90^o\)(2)
\(BD:\)Cạnh chung (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )
b)
---Theo đề bài ta có :
\(AB=EB\left(GT\right)\)(1)
và \(\widehat{ABC}=60^o\left(gt\right)\)(2)
Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều (đpcm)
--- Vì \(\Delta ABE\)đều
\(\Rightarrow AB=BE=AE\)
Mà \(AB=6cm\)(gt)
...\(AE=EC\)
\(\Rightarrow EC=6cm\)
mà \(BE=6cm\)
Có \(EC+BE=BC\)
\(\Rightarrow6+6=12cm\)
Vậy BC =12cm
a) Xét \(\Delta ABD\)và \(\Delta EBD\)có:
\(BA=BE\left(gt\right)\)
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(BD\)là cạnh chung
Do đó: \(\Delta ABD=\Delta EBD\left(c.g.c\right)\)
a, xét tam giác abd và tam giác ebdcó
ba=be(gt)
góc abd=góc ebd(gt)
bd chung
=>tam giác abd =tam giác ebd (cgc)
b,gọi i là giao điểm của ae và bd
ta có ba=be(gt)=>b cách đều a và e=>bd vuông góc vs ae<=>bi vuông góc vs ae(i thuộc bd)
xét tam giác abi và tam giác ebi có
ba=be(gt)
góc abd=góc ebd(gt)
bi chung
=>tam giác abi=tam giác ebi(CGC)
=>ai=ie(2 cạnh tg ứng)
=> bi là đường trung tuyến đồng thời là đường vuông góc của ae
=>bi là đường trung trực của ae <=>bd là đường trung trực của ae (i thuộc bd)