K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

Em tham khảo bài toán tương tự tại link dưới đây nhé:

Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath

Chú ý rằng: EF//BC, EF, BC đều cố định nên khoảng cách giữa 2 đường thẳng này là cố định.

Vậy thì I luôn cách BC một khoảng cố định.

15 tháng 10 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath

27 tháng 9 2020

hihihihihihiihiihiihihiihihihihihihihihihihihihihihiihihiihihihihihihiihihihihihihihihihihihihihihihihhihihihihihihihhiihihihihihiihihiihihihihihihihihihihihihihihihihiihihihihihiihihihihihihihihihiihihihihiihiihihihihiihihihihihiihihihihihiihhiihihihiihihihihihiihihihihhiihhiihiihihihihihihihihihihihiihhiiihhiihhiihihihihihihihiihihih

15 tháng 10 2018

Em tham khảo bài toán tương tự tại link dưới đây nhé:

Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath

1 tháng 11 2017

a)Xét tứ giác ADME có góc MDA=90(gt)

góc DAE=90(gt)

góc AEM=90(gt)

=>tứ giác ADME là hình chữ nhật

=>AM=DE

b)Kẻ AH vuông góc với BC

Ta có DE=AM>=AH

Dấu "=" xãy ra khi M trùng H

Vậy DE có độ dài nhỏ nhất bằng AH khi M là chân đường cao kẻ từ A đến BC

8 tháng 9 2017

Cách làm :

Bạn chỉ cần chứng minh AEDM là HCN ;O là trung điểm của DE =>O cũng là trung điểm của AM =>O,M,A thẳng hàng
b,
Gọi P ,Q lần lượt là trung điểm của AB,AC
=> giới hạn :
*Khi M trùng với B=> O trùng với P
*Khi M trùng với C=> O trùng với Q
=> I thuộc PQ
c,
Kẻ đường cao AH
Khi M trùng với H thì AM ngắn nhất (quan hệ đường vuông góc và đường xiên)

21 tháng 4 2017

Bài giải:

a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900

nên ADME là hình chữ nhật

O là trung điểm của đường chéo AM.

Vậy A, O, M thẳng hàng

b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:

Cách 1:

Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).

Suy ra OK=12AHOK=12AH

Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.

Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.

Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.

21 tháng 4 2017

a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900

nên ADME là hình chữ nhật

O là trung điểm của đường chéo AM.

Vậy A, O, M thẳng hàng

b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:

Cách 1:

Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).

Suy ra OK=12AHOK=12AH

Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.

Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.

Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.


=