Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p/s: Bạn tự vẽ hình nha!! ^ ^
a) Xét \(\Delta\)AMC và \(\Delta\)DMB có:
AM = MD (gt)
\(\widehat{AMC}=\widehat{BMD}\)(hai góc đối đỉnh).
BM = MC (gt)
=> Xét \(\Delta\)AMC = \(\Delta\)DMB (c.g.c)
b) Xét tứ giác ABCD có:
AM = MD (gt)
BM = MC (gt)
\(\widehat{BAC}\)= 90 độ
=> ABCD là hình bình hành (DHNB)
=> \(\Delta ABC=\Delta BAD\)(đpcm).
c) Vì \(\Delta\)ABC vuông tại A, đường trung tuyến AM => AM = 1/2 BC (tính chất đường trung tuyến bằng nửa cạnh huyền trong tam giác vuông).
_Kik nha!! ^ ^
a)Chứng minh tam giác AMC = tam giác DMB?
Xét tam giác AMC và tam giác DMB có:
- Góc BMD = góc AMC (đối đỉnh)
-BM = MC (gt)
-MA = MD (gt)
=> Tam giác AMC = tam giác DMB(g.c.g)
b)Chứng minh AC = BD?
Ta có: tam giác AMC = tam giác DMB (cmt)
=>BD=AC
c)Chứng minh AB vuông góc với BD?
Xét tam giác AMC và tam giác DMB có:
-Góc DMB = góc ABC (so le trong)
=>BD//AC
Mà AB vuông góc với AC
=> AB vuông góc với BD
d) Chứng minh AM=1/2 BC?
Xát tam giác ABC vuông tại A có:
M là trung điểm của BC(gt)
=>AM là đường trung tuyến
=>AM=1/2 BC (tính chất đường trung tuyền trong 1 tam giác vuông)
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
A B C M D
a, Xét \(\Delta AMC\) và \(\Delta DMB\) có:
AM = MD ( gt )
\(\widehat{BMD}=\widehat{AMC}\)( hai góc đối đỉnh )
BM = CM ( vì AM là trung tuyến )
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
b,\(\Delta AMC=\Delta DMB\left(cmt\right)\Rightarrow\widehat{MBD}=\widehat{C}\)
Xét \(\Delta ABC\) có \(\widehat{A}=90^o\Rightarrow\widehat{ABC}+\widehat{C}=90^o\)(định lý )
mà \(\widehat{MBD}=\widehat{C}\Rightarrow\widehat{ABC}+\widehat{MBD}=90^o\)
hay \(\widehat{ABD}=90^0\)
c,\(\Delta AMC=\Delta DMB\left(cmt\right)\Rightarrow BD=AC\)
Xét \(\Delta ABC\) và \(\Delta BAD\) có:
AB cạnh chung
\(\widehat{ABD}=\widehat{BAC}=90^o\)
BD = AC ( cmt )
\(\Rightarrow\Delta ABC=\Delta BAD\left(c.g.c\right)\)
\(\Rightarrow BC=AD\)
Vì AM = MD => \(AM=\frac{1}{2}AD\)
mà BC = AD ( cmt )
\(\Rightarrow AM=\frac{1}{2}BC\)
a)
TAM GIÁC AMC =TAM GIÁC DMB (C.G.C)
b)
\(\Rightarrow\) GÓC MDB =GÓC MCA (TAM GIÁC AMC =TAM GIÁC DMB )
Ở VỊ TRÍ SLT
\(\Rightarrow\) AC \(\\ \)BD
MÀ BA VUÔNG GÓC VỚI AC
\(\Rightarrow\) BD VUÔNG GÓC VỚI BA \(\Rightarrow\)GÓC ABD =90
C) TAM GIÁC ABC VUÔNG TẠI A CÓ AM LÀ ĐƯỜNG TRUNG TUYẾN
ĐL :Trong tam giác vuông đường trung tuyến ứng với cạnh huyền =1 nửa cạnh ấy
\(\Rightarrow\)AM = \(\frac{1}{2}\)BC
A B C M D
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
a: Xét ΔAMC và ΔDMB có
MC=MB
\(\widehat{AMC}=\widehat{DMB}\)
MA=MD
DO đó: ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: ΔABD vuông
c: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BC/2