K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

11 tháng 3 2020

B D A C

Hình hơi xấu xíu :vv

a) Xét t.giác AMB và t.giác DMC có :

MA = MD ( gt )

\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)

MB = MC (gt)

Vậy t.giác AMB = t.giác DMC (c.g.c)

b) Do : t.giác AMB =  t.giác DMC ( cmt ) 

=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)

Xét t.giác ABC và t.giác DCB có :

BC : cạnh chung

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

AB = DC ( cmt )

Vậy t.giác ABC = t.giác DCB ( c.g.c )

=> AC = BD

\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.

=> AC // BD

Vì : t.giác ABC = t.giác DCB ( cmt )

=> \(\widehat{BAC}=\widehat{BDC}=90^0\)

23 tháng 8 2022

ko biết

1 tháng 12 2021

Thằng kia ko tl thì cút,đừng có làm phiền người khác.Đã bị 20 vé báo cáo rồi đấy

1 tháng 12 2021

các bạn đừng có nói bậy

30 tháng 4 2019

Hình bạn tự vẽ

a) Xét ΔAMB và ΔEMC

AM=ME (giả thiết)

BM=MC (AM là trung tuyến BC)

∠AMB=∠EMC (đối đỉnh)

⇒ΔAMB=ΔEMC (c.g.c)

b)ΔAMB=ΔEMC

⇒AB=CE (hai cạnh tương ứng)

Mà AC>AB (Tính chất )

⇒AC>CE

c)Ta có MB+MC=BC

Mà MB=MC

⇒MB=MC=BC:2=24:2=12dm

Xét ΔAMB vuông tại B,ta có:

AM^2 =AB^2 +MB^2

20^2=AB^2+12^2

⇒AB^2=20^2-12^2

=400-144

AB^2=256

AB=16dm

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

24 tháng 11 2019

A B C E M

a) Xét t/giác AMB và t/giác EMC

có  MA = ME (gt)

   BM = MC (gt)

 \(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)

=> t/giác AMB = t/giác EMC (c.g.c)

b) Do t/giác AMB = t/giác EMC (cmt)

=> \(\widehat{BAM}=\widehat{MEC}\)(2 góc t/ứng)

mà 2 góc này ở vị trí so le trong

=> AB // CE

=> \(\widehat{A}+\widehat{C}=180^0\) (trong cùng phía)

mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CE

c) Xét t/giác ABC vuông tại A có AM là đường trung tuyến

=> AM = BM = MC = 1/2BC

=> BC = 2AM

HD C2: CM t/giác ABC = t/giác CEA (C.g.c)

=>  BC = EA (2 cạnh t/ứng

=> 1/2BC = 1/2EM

=> 1/2BC = MA (vì EM = MA = 1/2EM)

=> AM = 2BC