K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

A B C M

ta có: AM = 1/2 BC => AM = BM, CM

xét tam giác ABM có : AM = BM

=> ABM cân tại M

xét tam giác ACM có : AM = CM

=> ACM cân tại M

Mà góc AMB + AMC = 180 độ ( kề bù )

=> góc B + góc BAM + góc C + góc CAM = 180 độ

Mà góc B = góc BAM

     góc C = góc CAM

=> BAM + CAM = 90 độ

=> tam giác ABC cân tại A

27 tháng 10 2018

A B C M N

∆ABC có M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm N sao cho MN = MA.
Ta có:
ےAMB = ےNMC (đối đỉnh)
BM = CM (giả thiết)
MA = MN (dựng hình)
Suy ra: ∆MAB = ∆MNC (c.g.c)
Suy ra: NC = AB và ےMBA = ےMCN
Do ےMBA = ےMCN nên AB // NC
Suy ra ےBAC + ےACN = 180
Ta có: ےBAC = 90 nên ےACN = 90
=> ∆ABC = ∆CNA (c.g.c) vì AC là cạnh chung
AB = NC (cmt) và ےBAC = ےACN = 90
=> AN = BC
=> AM = \(\frac{1}{2}BC\)

=>CMT

27 tháng 10 2018

Ta có: tam giác ABC vuông tại A,M là trung điểm của BC (gt) => AM là đg trung tuyến ứng vs cạnh huyền BC của tam giác vuông ABC

=>AM = 1/2 BC ( trong tam giác vuông, đg trung tuyến ứng vs cạnh huyền bằng nửa cạnh huyền )

Vậy....

14 tháng 1 2017

Có M là trung điểm BC và AM = 1/2 BC (đề bài)

=> AM là đường trung tuyến ứng với cạnh huyền

Mà cái này chỉ có trong tam giác vuông

=> ABC là tam giác vuông tại A

14 tháng 1 2017

Vì M là trung điểm của BC=>AM là đường trung tuyến (1)

Mà AM =1/2BC(2)

Từ (1) và (2) =>tam giác ABC vuông tại A    (ĐPCM)

24 tháng 10 2021

Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}\)

21 tháng 11 2021

Hình tự vẽ nhé ! 

             Giải 

a) Xét tam giác AMB và tam giác AMC có

 AB = AC ( gt )

 MB = MC ( vì M là trung điểm của BC )

 AM cạnh chung 

Do đó tam giác AMB = tam giác AMC 

b) Vì hai tam giác AMB = AMC nên góc BAM = góc CAM 

Vì góc BAM = góc CAM nên AM là tia phân giác của góc BAC 

c)Vì hai tam giác AMB = AMC nên góc AMB = góc AMC

mà góc AMB + góc AMC = 1800 nên góc AMB = 900

Vì góc AMB =900  nên AM vuông góc với BC  

21 tháng 11 2021

đầu buồi

 

10 tháng 10 2019

A B C E M F D

a ) Xét \(\Delta ABM\)và \(\Delta DCB\) có :

BM = CM (gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

AM = DM (gt)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

Vì : \(\Delta ABM=\Delta DCM\left(cmt\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) . Mà 2 góc này ở vị trí so le trong 

\(\Rightarrow\) AB // DC

c )  Xét \(\Delta EBM\) và \(\Delta FCM\) có :
\(\widehat{BEM}=\widehat{CFM}=90^o\)

BM = MC (gt)

\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)

\(\Rightarrow\Delta EBM=\Delta FCM\)(cạnh huyền - góc nhọn )

\(\Rightarrow ME=MF\)

\(\Rightarrow M\) là trung điểm của EF ( đpcm)

Chúc bạn học tốt !!!