K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên AM=BC/2

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên AM=1/2BC

7 tháng 3 2024

loading...  

a) Do M là trung điểm của BC (gt)

⇒ MB = MC

Xét ∆AMB và ∆DMC có:

AM = DM (gt)

∠AMB = ∠DMC (đối đỉnh)

MB = MC (cmt)

⇒ ∆AMB = ∆DMC (c-g-c)

⇒ ∠MAB = ∠MDC (hai góc tương ứng)

Lại có:

∠MAC + ∠MAB = 90⁰ (∆ABC vuông tại A)

⇒ ∠MAC + ∠MDC = 90⁰

⇒ ∠DAC + ∠ADC = 90⁰

∆CDA có:

∠DAC + ∠CDA + ∠ACD = 180⁰ (tổng ba góc trong ∆ACD)

⇒ ∠ACD = 180⁰ - (∠DAC + ∠CDA)

= 180⁰ - 90⁰

= 90⁰

⇒ ∆ACD vuông tại C

Do ∆AMB = ∆DMC (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆ABC và ∆CDA có:

AC là cạnh chung

AB = CD (cmt)

⇒ ∆ABC = ∆CDA (hai cạnh góc vuông)

b) Do ∆ABC = ∆CDA (cmt)

⇒ BC = AD (hai cạnh tương ứng)

Do AM = DM (gt)

⇒ AM = DM = ½AD

Mà AD = BC (cmt)

⇒ AM = ½BC

a: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

DO đó: ABDC là hình bình hành

Suy ra: AB=DC; AC=BD

Xét ΔABC và ΔCDA có 

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=1/2BC

23 tháng 12 2016

Bn tự vẽ hình nha!!!

a) Xét \(\Delta ABM\)\(\Delta DCM\) có:

MB = MC (M là trung điểm BC (gt))

\(\widehat{AMB} = \widehat{DMC}\)(đối đỉnh)

MA = MD (gt)

\(\Rightarrow\)\(\Delta ABM = \Delta DCM (cgc)\)

b) Vì \(\Delta ABM = \Delta DCM (cmt)\)

\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)

mà 2 góc này nằm ở vị trí so le trong

\(\Rightarrow\) AB // CD

c) \(\Delta ABM = \Delta DCM (cmt)\)

\(\Rightarrow\) AB = DC (2 cạnh tương ứng)
Vì AB // CD (cmt)
\(AB \perp AC \)
\(\Rightarrow\) \(CD \perp AC\) (Định lí 2 bài từ vuông góc đến song song)
Xét \(\Delta ABC\)\(\Delta CDA\) có:
\(\widehat{BAC} = \widehat{DCA} = 90^0 \)
AB = CD (cmt)
AC chung
\(\Rightarrow\)\(\Delta ABC = \Delta CDA\) (2 cạnh góc vuông)
\(\Rightarrow\) AD = BC (2 cạnh tương ứng)
\(AM=\frac{1}{2}AD\)
\(\Rightarrow AM=\frac{1}{2}BC\)
 

 

23 tháng 12 2016

cảm ơn bạn nhìu nhìu lắm

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD

29 tháng 12 2023

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng

14 tháng 4 2020

a, Xét △BMA và △CMD 

Có: MB = MC (gt)

    BMA = CMD (2 góc đối đỉnh)

       MA = MD (gt)

=> △BMA = △CMD (c.g.c)

=> MBA = MCD (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // CD (dhnb)

Mà AB ⊥ AC (gt)

=> CD ⊥ AC (từ vuông góc đến song song)

Xét △ABC vuông tại A và △CDA vuông tại C

Có: AC là cạnh chung

       AB = DC (△BMA = △CMD)

=> △ABC = △CDA (2cgv)

b, △ABC = △CDA (cmt)

=> BC = AD (2 cạnh tương ứng)

=> BC = 2AM  

=> AM = BC : 2  

28 tháng 2 2021

em tự vẽ hình nha 

xét △AMB và △DMC có:

BM = MC

AM = MD

góc AMB = góc DMC  ( đối đỉnh )

=> △AMB = △DMC 

=> góc ABM = góc DCM và ở vị trí sole trong 

=> AB // CD 

ta có AB vuông góc với AC 

=> CD vuông góc với AC ( đpcm )

 

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui