Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}\)
Ta có hình vẽ sau:
A B C D M 1 2
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)
Trên tia đối của MA lấy điểm D sao cho MD=MA
xét tam giác AMB và tam giác DMC có:
MB=MC(gt)
góc AMB=DMC(2 góc đối đỉnh)
MA=MD( do cách vẽ)
=>tam giác AMB=DMC(c-g-c)
=> AB=DC và góc BAM=MDC=>AB//CD( vì có cặp góc so le trong bằng nhau)
vì AC vuông góc AB(gt) nên AC vuông góc vs CD( quan hệ giữa tính song song và vuông góc)
xét tam giác ABC và CDA có
AB=CD 9(cmt)
góc A=C=90 độ
AC chung
=> tam giác ABC=CDA(c-g-c) suy raBC=AD. Vì AM=1/2AD nên AM=1/2BC