K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Trả lời................

Tớ không biết đúng hay sai đâu nha Ý Phạm

a,Xét tam giác ABE (BAE^ vuông) và tam giác HBE (BHE^ vuông) có:

BE=BE (cạnh chung)

ABE^=HBE^

 ⟹ ABE^=HBE^(ch+gn)

b,Ta có:

BA=BH (tam giác ABE = tam giác HBE)

EA=EH (________________________)

 ⟹ BE là đường trung trực của AH

c,Xét tam giác EKA và tam giác ECH có

AE=EH (gt)

EAK^=EHK^(=90o)

AEK^=HEC^(đối đỉnh)

 ⟹Tam giác EKA=tam giacsEHK (g-c-g)

 ⟹EK=EH ( cạnh tương ứng)

d,Từ điểm E đến đường thẳng HC có:
EH là đường vuông góc

EC là đường xiên

 ⟹EH<EC( quan hệ đường vuông góc)

Mà EH=AE(tam giác ABE = tam giác HBE)

 ⟹AE<AC

10 tháng 5 2019

Xin lỗi mình nhầm ở ròng cuối nha là

EC>AE

2 tháng 5 2020

a)Xét ΔABE và ΔHBE, ta có

:\widehat{BAE} =\widehat{BHE} =90^0

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

b)

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

c)

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE =ΔCHE

=> EK = EC(hai cạnh tuong ứng)

d)

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

2 tháng 5 2020

AE<Ec

28 tháng 10 2023

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

13 tháng 7 2017

a) xét tam giác ABE vuông tại A và tam giác HBE vuông tại H có 

 gócABE = gócHBE ( BE là phân giác gócABH) 

BE chung

 \(=>\)tam giác vuông ABE = tam giác vuông HBE ( cạnh huyền góc nhọn )

\(=>\)AE=EH ( 2 cạnh tương ứng)

b) xét tam giác AKE vuông tại A và tam giác HCE vuông tại H có

AE=EH ( theo câu a)

góc AEK = HEC ( 2 góc đối đỉnh ) 

\(=>\)tam giác vuông AKE = tam giác vuông HCE ( cạnh góc vuông - góc nhọn kề cạnh ấy)

\(=>\)EK=EC ( 2 cạnh tương ứng ) 

29 tháng 7 2016

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

5 tháng 2 2017

Bạn giúp mình bài này được ko ?undefined

20 tháng 8 2015

a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co

BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la  tia p/g goc B)

--> tam giac ABE= tam giac HBE ( ch=gn)

b) ta co

BA=BH ( tam giac ABE= tam giac HBE)

EA=EH( tam giac ABE= tam giac HBE)

==> BE la duong trung truc cua AH

c) xet tam giac EKA va tam giac ECH   ta co

AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )

--> tam giac EKA = tam giac ECH ( g--c-g)

-->  EK=EC (2 canh tuong ung )

d) tu diem E den duong thang HC ta co :

EH la duong vuong goc ( EH vuong goc BC)

EC la duong xien

-> EH<EC ( quan he duong xien duong vuong goc)

ma EH= AE ( tam giac ABE= tam giac HBE)

nen AE < EC

 

3 tháng 5 2017

Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng  

1) Tam giác ABE=tam giác HBE

2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC

3) AE<EC

8 tháng 3 2022

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

8 tháng 3 2022

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

5 tháng 5 2019

a, xét 2 tam giác vuông ABE và HBE có:

          BE cạnh chung

         \(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)

=> tam giác ABE =tam giác HBE(CH-GN)

b) gọi O là giao điểm của BE và AH

xét tam giác OAB và tam giác OHB có:

          OB chung

         \(\widehat{OBA}\)=\(\widehat{OBH}\)(gt)

         AB=HB(theo câu a)

=> tam giác OAB=tam giác OHB(c.g.c)

=> OA=OH=> O là trung điểm của AH(1)

\(\widehat{AOB=\widehat{HOB}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{HOB}}\)=90 độ => BO\(\perp\)AH(2)

từ (1) và (2) => BE là trung trực của AH

c)xét 2 tam giác vuông EAK và HEC có:

       AE=EH

      \(\widehat{AEK=\widehat{HEC}}\)(đối đỉnh)

=> tam giác EAK=tam giác HEC(cạnh góc vuông-góc nhọn)

=> EK=EC

d) trong tam giác vuông AEK có: AE<EK(vì cạnh huyền>cạnh góc vuông) mà EK=EC=> AE<EC

A B C E H K O

--thanks you very much--

9 tháng 5 2023

Xét ΔABE và ΔHBE : có :

^ BAE = ^ BHE =  90° ( giả thiết )

    BE chung

  ^ABE = ^HBE ( giả thiết )

=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )

b) có ΔABE=ΔHBE ( câu a )

=> BA =BH (hai cạnh tương ứng )

gọi I là giao điểm của BE và AH .

xét ΔABI và ΔHBI:có:

BA=BH (cmt ) 

^ABE = ^HBE ( giả thiết )

BI chung

=>ΔABI = ΔHBE ( c-g-c )

=> AE=EH ( hai cạnh tương ứng ) (1)

=> ^BIA = ^BIH ( hai góc tương ứng )

có  ^BIA + ^BIH = 180°

=> ^BIA = ^BIH = 180°:2=90° 

=>BI vuông góc AH (2) 

từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH

c, xét  ΔAEK và  ΔHEC

có: ^EAK = ^EHC = 90° (gt)

        AE=EH (ΔABE=ΔHBE )

      ^AEK=^HEC ( hai góc đối đỉnh )

=>ΔAEK và  ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )

=> EK=EC ( hai cạnh tương ứng )

d, có : AE<EK  (trong Δ vuông cạnh huyền là cạnh lớn nhất )

     mà EK=EC (câu c)

     nên AE<EC (đpcm)