Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự kẻ hình nhé =)))
Áp dung hệ thưç giữa cạnh và đương cao vào tg ABC, có:
AH^2=BH.HC
->AH=12cm
Áp dụng hệ thức giữa cạnh và đg cao vào tg BAH có
1/HK^2=1/BH^2 +1/AH^2
-> HK= 7.2 cm
áp dụng tương tự vào tg HAC tính được HN=9.6 cm
AMHN là hcn ( bạn tự chứng minh vì có 3 góc =90độ)
SMHN=HK.HN=7.2 . 9.6=69.12 cm
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
A C B H O D E M N
a) Do D, E thuộc đường tròn đường kính DE nên \(\widehat{DAE}=\widehat{DHE}=90^o\)
Xét tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
Do ADHE là hình chữ nhật nên hai đường chéo DE và AH cắt nhau tại trung điểm mỗi đường. Mà O là trung điểm AH nên O là trung điểm DE.
Vậy D, O, E thẳng hàng.
b) Do AH vuông góc BC nên BC cũng là tiếp tuyến tại H của đường tròn (O)
Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có : DM = MH.
Xét tam giác vuông ADH có DM = MH nên DM = MH = MB hay M là trung điểm BH.
Tương tự N là trung điểm HC.
c) Dễ thấy MDEN là hình thang vuông.
Vậy thì \(S_{MDEN}=\frac{\left(MD+EN\right).DE}{2}=\frac{\left(MH+HN\right).AH}{2}\)
\(=\frac{MN.AH}{2}=\frac{\frac{1}{2}BC.AH}{2}=\frac{1}{4}BC.AH=\frac{1}{4}AB.AC\)
\(=\frac{1}{4}.9.8=18\left(cm^2\right)\)
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
\(b,\) Xét tam giác CFH và HEB vuông tại F,E có \(FN=\dfrac{1}{2}CH=\dfrac{8}{9}\left(cm\right);EM=\dfrac{1}{2}BH=\dfrac{9}{10}\left(cm\right)\)
Gọi O là giao điểm AH và EF
Vì AEHF là hcn nên \(OH=OF=OE=OA\)
\(\Rightarrow\widehat{OFH}=\widehat{OHF}\Rightarrow\widehat{OFH}+\widehat{NFH}=\widehat{OHF}+\widehat{NHF}\left(NF=NH\right)\\ \Rightarrow\widehat{NFO}=\widehat{NHO}=90\)
Chứng minh tương tự \(\Rightarrow\widehat{MEF}=\widehat{MHO}=90\)
\(\Rightarrow EFNM\) là hình thang vuông
\(\Rightarrow S_{EFNM}=\dfrac{1}{2}EF\cdot\left(ME+NF\right)=\dfrac{1}{2}\cdot\dfrac{12}{5}\cdot\left(\dfrac{8}{9}+\dfrac{9}{10}\right)=\dfrac{6}{5}\cdot\dfrac{161}{90}=\dfrac{161}{75}\left(cm^2\right)\)
\(a,BC=\sqrt{AC^2+AB^2}=5\left(cm\right)\)
Áp dụng HTL tam giác \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{AC^2}{BC}=\dfrac{16}{9}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{9}{5}\left(cm\right)\end{matrix}\right.\)
Áp dụng HTL tam giác \(HA^2=HB\cdot HC=\dfrac{16}{5}\cdot\dfrac{9}{5}=\dfrac{144}{25}\Leftrightarrow HA=\dfrac{12}{5}\left(cm\right)\)