K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

Ta có: AH^2=9*16=> AH=12

xét tam giac ABH vg có AB^2=AH^+BH^2=>AB=15

16 tháng 12 2021

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

3 tháng 9 2020

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

3 tháng 9 2020

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

20 tháng 8 2020

A B C H

Ta có : BH + CH = 64 + 81 = 145 (cm) 

Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có AH là đường cao , ta có :

+) \(AB^2=BH.CH\)

\(\Leftrightarrow AB^2=64.145=9280\)

\(\Leftrightarrow AB=\sqrt{9280}=8\sqrt{145}\left(cm\right)\)

+) \(AC^2=BC.CH\)

\(\Leftrightarrow AC^2=81.145=11745\)

\(\Leftrightarrow AC=\sqrt{11745}=9\sqrt{145}\left(cm\right)\)

Ta có : 

\(\sin B=\frac{AC}{BC}=\frac{9\sqrt{145}}{145}=\frac{9}{\sqrt{145}}\)

\(\Rightarrow\widehat{B}=48^o22'\)( cái này bấm máy ra nha )

Xét tam giác ABC có :

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Leftrightarrow\widehat{C}=180^o-90^o-48^o22'=41^o38'\)

Vậy .......

28 tháng 6 2021

a.     + CH = 10 - 3.6 = 6.4 (cm)

     - Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào ΔABC ta có :

         + \(AH^2=BH.CH\)

      \(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4.8\) (cm)

         + \(AB^2=BC.BH\)

      \(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\) (cm)

       + \(AC^2=BC.CH\)

      \(\Rightarrow AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\) (cm)

b.       \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

c.       \(P_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)

\(AH=\dfrac{2\cdot AB}{BC}=\dfrac{2\cdot2\sqrt{2}}{4}=\sqrt{2}\left(cm\right)\)

\(BH=CH=\sqrt{AB^2-AH^2}=\sqrt{8-2}=\sqrt{6}\left(cm\right)\)

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8\left(cm\right)\\AC=6\left(cm\right)\\AH=4,8\left(cm\right)\end{matrix}\right.\)

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

29 tháng 9 2019

bạn sử dụng hệ thức lượng trong tg là ra

12 tháng 7 2017

B A C H

Xét \(\Delta ABC\)có \(AH^2=BH.CH=25.64=1600\Rightarrow AH=40\left(cm\right)\)

\(AC^2=CH.BC=64.\left(64+25\right)=5696\Rightarrow AC=8\sqrt{89}\left(cm\right)\)

\(AB^2=BH.BC=25.89=2225\Rightarrow AB=5\sqrt{89}\left(cm\right)\)

Ta có \(\sin B=\frac{AC}{BC}=\frac{8\sqrt{89}}{89}\Rightarrow\widehat{B}\approx58^0\)\(\Rightarrow\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-58^0=32^0\)