K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Theo công thức hệ thức lượng trong tam giác vuông ta có:

\(AB^2=BH.BC\Leftrightarrow 9=1,8.BC\Rightarrow BC=5\) (cm)

Định lý Pitago: \(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\) (cm)

Như vậy, khi quay tam giác $ABC$ quanh trục $AB$ ta thu được hình nón có đường cao \(AB=3\), bán kính đáy \(AC=4\) và đường sinh \(BC=5\)

Diện tích xung quanh của hình nón thu được:

\(S_{\text{xq}}=\pi rl=\pi. AC.BC=20\pi \) (cm vuông)

Thể tích hình nón là:

\(V=\frac{1}{3}\pi r^2h=\frac{1}{3}.\pi. 4^2.3=16\pi \) (cm khối)

29 tháng 12 2019

Theo công hệ thức lương trong tam giác vuông ta có : 

\(AB^2=BH.BC\Leftrightarrow9=1,8.BC\Rightarrow BC=5\left(cm\right)\)

Định lý Pytago : 

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Như vậy khi ta quay tam giác ABC quanh trục AB ta thu được hình nón có đường cao \(AB=3\) , bán kính đáy \(AC=4\) và đường sinh \(BC=5\)

Diện tích xung quanh của hình nón thu được : 

\(S_{xq}=\pi rl=\pi.AC.BC=20\pi\left(cm^2\right)\)

Thể tích hình nón là : 

\(V=\frac{1}{3}\pi r^2h=\frac{1}{3}.\pi.4^2.3=16\pi\) ( cm khối ) 

21 tháng 7 2017

A B C H

ta co \(AH^2=BH\cdot HC\Rightarrow AH^2=1,8HC\)

ap dung dl pitago vao tam giac vuong AHC co \(AH^2+CH^2=AC^2\Rightarrow1,8HC+HC^2=16\) 

                           \(\Rightarrow CH^2+1,8CH-16=0\Rightarrow\left(CH-3,2\right)\left(CH+5\right)=0\)

     \(\Rightarrow CH=3,2\) (do BH>0)

\(\Rightarrow AH^2=1,8\cdot CH=5.76\Rightarrow AH=2,4\)

\(BH+HC=BC\Rightarrow BC=1,8+3,2=5\)

ap dung dl pitago ta tinh dc \(AB^2+AC^2=BC^2\Rightarrow AB=3\)

                        

Sửa đề: BC=29cm

Ta có: \(\dfrac{AB}{AC}=\dfrac{20}{21}\)

nên \(AB=\dfrac{20}{21}AC\)

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{20}{21}AC\right)^2+AC^2=29^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{841}{441}=841\)

\(\Leftrightarrow AC^2=441\)

hay AC=21(cm)

Ta có: \(AB=\dfrac{20}{21}AC\)(cmt)

nên \(AB=\dfrac{20}{21}\cdot21=20\left(cm\right)\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=20+21+29=70\left(cm\right)\)

16 tháng 6 2019

A B C H N M 3 4

Xét \(\Delta HAC\)vuông tại H  có HN là đường trung tuyến ứng với cạnh huyền 

=> HN = NC = NA = AC/2 

=> AC = 2HN = 8

Tương tự AB = 6

Theo hệ thức lượng trong tam giác vuông cho tam giác ABC vuông tại A có AH là đường cao thì

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)

\(\Leftrightarrow AH=\frac{24}{5}\)

Áp dụng định lí Pytago vào \(\Delta HAC\)vuông tại H có

\(HA^2+HC^2=AC^2\)

\(\Leftrightarrow\left(\frac{24}{5}\right)^2+HC^2=8^2\)

\(\Leftrightarrow HC=\frac{32}{5}\)

Tương tự \(HB=\frac{18}{5}\)

12 tháng 9 2016

gọi độ dài HD=x,suy ra BD=63+x ;CD=112-x

theo hệ thứ lượng trong tam giác vuông:AB^2=BH*BC=63*(63+112)=11025 nên AB=105

                                                          AC^2=CH*BC=19600; nên AC=140

do AD là đường phân giác nên BD/CD=AB/AC  hayBD*AC=CD*AB

do đó  (63+x)*140=(112-x)*105 .giải ra ta được x=12. Vậy HD=12 cm

12 tháng 9 2016

cảm ơn nha.