Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
a) Ta có: góc A + góc B + góc C = 180 độ ( tổng 3 góc trong tam giác)
90 độ + 60 độ + góc C = 180 độ
góc C = 180 độ - (90 độ + 60 độ)
góc C = 30 độ
Xét tam giác ABC có:
góc A > góc B > góc C
(90 độ > 60 độ > 30 độ)
-> BC>CA>AB
(quan hệ giữa cạnh và góc đối diện)
b) Xét tam giác abc và tam giác dbe có:
\(\widehat{b}\): góc chung
ab = bd (gt)
\(\widehat{bac}\)= \(\widehat{bde}\)( = 90 độ )
Vậy: tam giác abc = tam giac dbe
a)Xét tam giác ABC có:
góc ABC + góc BAC + góc ACB =180 độ. Thay số:
60 độ + 90 độ + góc ACB = 180 độ
góc ACB =180 độ - (60 độ + 90 độ)
góc ACB = 30 độ
b)Xét tam giác AMN và tam giác CMN có:
AM = CM (M là trung điểm của AC)
MN chung
góc AMN = góc CMN =90 độ(MN vuông góc với AC)
Suy ra :tam giác AMN = tam giác CMN(c.g.c)
CÒN LẠI MÌNH CHƯA NGHĨ RA. MONG BẠN THÔNG CẢM
tam giác ABC vuông tại A (gt)
=> góc B + góc C = 90
mà góc B = 60
=> góc C = 30
=> góc C < góc B xét tam giác ABC
=> AB < AC (đl)
tgiac ABC vuông ở , B=60¤=> C=30¤
=>AC>AB vì
AC là cạnh đối diện với góc lớn hơn (60¤)
AB.......................................nhở hơn (30¤)..