K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S_{AHC}=\dfrac{AH\cdot HC}{2}=\dfrac{2.4\cdot3.2}{2}=2.4\cdot1.6=3.84\left(cm^2\right)\)

6 tháng 11 2021

Xét \(\Delta ABC\) vuông tại A có

  \(BC^2=AB^2+AC^2=25\)

      \(\Rightarrow BC=5\left(cm\right)\)

  AC\(^2\) = CH . CB = 5 CH

      \(\Rightarrow CH=3,2\left(cm\right)\)

  AB . AC = AH . BC \(\Rightarrow AH=2,4\)

  Nên \(S_{AHC}=\dfrac{1}{2}.AH.CH=\dfrac{1}{2}.2,4.3,2=3,84\left(cm^2\right)\)

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC và AC^2=CH*BC

=>AB^2/AC^2=BH/CH

b: S AHC=8,64

=>1/2*AH*HC=8,64

=>AH*HC=17,28

S AHB=15,36

=>1/2*AH*HB=15,36

=>AH*HB=30,72

mà AH*HC=17,28

nên AH*AH*HB*HC=30,72*17,28

=>AH^2*AH^2=30,72*17,28

=>AH^4=530,8416

=>\(AH=\sqrt[4]{530.8416}=4.8\left(cm\right)\)

 

4 tháng 8 2023

Bạn làm câu c) giúp mình được không

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:

Ta có:

$AB.AC=AH.BC=40$ 

$AB^2+AC^2=BC^2=100$

$\Rightarrow (AB+AC)^2=AB^2+AC^2+2AB.AC=180$

$\Rightarrow AB+AC=6\sqrt{5}$

Theo định lý Viet đảo, $AB,AC$ là nghiệm của pt $X^2-6\sqrt{5}X+40=0$

$\Rightarrow AB=4\sqrt{5}; AC=2\sqrt{5}$ (giả sử $AB>AC$)
Dễ thấy $AIHK$ là hình chữ nhật do có 3 góc vuông $\widehat{A}=\widehat{I}=\widehat{K}=90^0$

$\Rightarrow IK=AH=4$

Theo định lý Pitago: $AI^2+AK^2=IK^2=16(1)$

Mặt khác, theo hệ thức lượng trong tam giác vuông:

$AI.AB=AH^2$

$AK.AC=AH^2$

$\Rightarrow AI.AB=AK.AC\Rightarrow \frac{AI}{AK}=\frac{AC}{AB}=\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}(2)$

Từ $(1);(2)\Rightarrow AI=\frac{4\sqrt{5}}{5}; AK=\frac{8\sqrt{5}}{5}$ (cm)

Chu vi AIHK:

$P=2(AI+AK)=2(\frac{4\sqrt{5}}{5}+\frac{8\sqrt{5}}{5})=\frac{24\sqrt{5}}{5}$ (cm)

Diện tích AIHK:

$S=AI.AK=\frac{4\sqrt{5}}{5}.\frac{8\sqrt{5}}{5}=6,4$ (cm vuông)

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Hình vẽ:

23 tháng 6 2017

a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ

cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2

TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2  ÁP DỤNG PITA GO TÌM RA CẠNH bc 

b,

23 tháng 6 2017

sao lại \(\frac{1}{\sqrt{2}}\) ?

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

7 tháng 10 2021

\(a,BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\left(pytago\right)\)

\(b,\) Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{9\cdot12}{15}=7,2\left(cm\right)\)

\(c,\) Dễ thấy AEHF là hcn

Do đó \(\widehat{HAF}=\widehat{EFA}\)

Mà \(\widehat{HAF}=\widehat{HBA}\left(cùng.phụ.\widehat{HAB}\right)\)

Do đó \(\widehat{EFA}=\widehat{HBA}\)

Ta có \(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{EFA}\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEF\sim\Delta ACB\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\Rightarrow AE\cdot AB=AF\cdot AC\)

\(d,\) Áp dụng HTL: \(\left\{{}\begin{matrix}AH^2=EA\cdot AB\\AH^2=FA\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AE=\dfrac{AH^2}{AB}=5,76\left(cm\right)\\AF=\dfrac{AH^2}{AC}=4,32\left(cm\right)\end{matrix}\right.\)

\(\Rightarrow S_{AEF}=\dfrac{1}{2}AE\cdot AF=\dfrac{1}{2}\cdot5,76\cdot4,32=12,4416\left(cm^2\right)\)

Mà \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=54\left(cm^2\right)\)

Vậy \(S_{BEFC}=S_{ABC}-S_{AEF}54-12,4416=41,5584\left(cm^2\right)\)

 

 

 

a: BC=5

b: AH=2,4

BH=1,8

\(S_{ABH}=\dfrac{AH\cdot BH}{2}=\dfrac{1.8\cdot2.4}{2}=2.16\left(đvdt\right)\)