K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

Với ΔABCΔABC có ˆA=90oA^=90o và ˆB=30oB^=30o

ˆC=60o⇒C^=60o

Gọi MM là trung điểm của BCBC

Mà ΔABCΔABC có ˆA=90oA^=90o

AM=BM=CM⇒AM=BM=CM ( định lý)

ΔAMC⇒ΔAMC cân tại MM

Mà ˆC=60oC^=60o

ΔAMC⇒ΔAMC đều

30 tháng 5 2017

Kẻ D sao cho A là trung điểm của CD . Tam giác BCD có đường cao BA (gt) và trung tuyến BA nên tam giác BDC cân ở B mà có góc C = 60 độ ( C= 90 - B= 90-30= 60)
Do đó tam giác BDC đều nên BC = CD mà AC= 1/2 CD( A là tđ CD) nên AC= 1/2 BC (đpcm)

28 tháng 4 2018

Với tam giác ABC có góc A = 90 o và góc B = 30 o => góc C = 60 o Gọi M là trung điểm của BC mà Δ ABC có góc A = 90 o =>AM=BM=CM(định lý) =>tam giác AMC cân tại M mà góc C = 60 o => Δ AMC đều =>AC=MC mà MC =1/2.BC => AC = 1/2 BC

11 tháng 1 2018

Câu a) Nè

Áp dụng định lí Pythagoras vào tam giác ABC

Ta có: \(AB^2+AC^2=BC^2\)

Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC

Áp dụng tính chât đường cao của tam giác vuông

Ta có: \(AH\cdot BC=AB\cdot AC\)

Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)

Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)

Vậy Kết luận 

~~~ Hết ~~~

Chụy là chanh đừng nhờn với chụy nha em.

Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết 

https://olm.vn/hoi-dap/detail/86239356392.html

14 tháng 4 2018

Bạn tự vẽ hình nhé:

Sơ lượt cách giải:

Dựng tam giác đều ABE sao cho điểm E  nằm cùng phía với điểm C đối với đường thẳng AB.

Vì góc BAC = 750 > góc BAE =600 nên tia AE nằm giữa hai tia AB và AC.

Gọi K là trung điểm của AC suy ra AK = KC =BH (gt)

Vì góc BAC = 75 độ nên góc KAE = góc HBA = 15 độ.

Suy ra tam giác HAB = tam giác KEA (c-g-c)

Suy ra góc K = góc H =90 độ

Suy ra tam giác AEC cân tại E, suy ra  góc ACE = 15 độ. Suy ra góc AEC = 150 độ.

Suy ra góc BEC = 150 độ (Vì = 360 độ - góc AEC -góc AEB =360 -150-60)

Suy ra tam giác AEC = tam giác BEC (c-g -c)

Suy ra góc BCE  =15 độ suy ra góc ACB = 30 độ

Suy ra góc ABC = 75 độ suy ra tam giác ABC cân tại C 

a, Ta có:

ADC=ˆAˆDAB=90o30o=60o

Mà ˆC=ˆAˆB=90o30o=60o

Nên ˆADC=ˆC=60o

Do đó ΔADCΔADC là tam giác đều. (đpcm)

b, Theo chứng minh phần a, ta có: ΔADCΔADC là tam giác đều

AD=DC=AC(1)

Mà do AD là trung tuyến của ​​ΔABCΔABC trên AC nên

BD=CD=12BC