Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ D sao cho A là trung điểm của CD . Tam giác BCD có đường cao BA (gt) và trung tuyến BA nên tam giác BDC cân ở B mà có góc C = 60 độ ( C= 90 - B= 90-30= 60)
Do đó tam giác BDC đều nên BC = CD mà AC= 1/2 CD( A là tđ CD) nên AC= 1/2 BC (đpcm)
Với tam giác ABC có góc A = 90 o và góc B = 30 o => góc C = 60 o Gọi M là trung điểm của BC mà Δ ABC có góc A = 90 o =>AM=BM=CM(định lý) =>tam giác AMC cân tại M mà góc C = 60 o => Δ AMC đều =>AC=MC mà MC =1/2.BC => AC = 1/2 BC
Câu a) Nè
Áp dụng định lí Pythagoras vào tam giác ABC
Ta có: \(AB^2+AC^2=BC^2\)
Vì AH hạ từ đỉnh A và vuông góc với BC nên AH là đường cao của tam giác ABC
Áp dụng tính chât đường cao của tam giác vuông
Ta có: \(AH\cdot BC=AB\cdot AC\)
Suy ra: \(AH^2\cdot BC^2=AB^2\cdot AC^2\)
Suy ra \(\frac{BC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra \(\frac{AC^2+AB^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)
Suy ra: \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)
Vậy Kết luận
~~~ Hết ~~~
Chụy là chanh đừng nhờn với chụy nha em.
Xong mik đã chứng minh xong một câu a) còn câu b dễ lắm tự làm nha, bro. Hết
Bạn tự vẽ hình nhé:
Sơ lượt cách giải:
Dựng tam giác đều ABE sao cho điểm E nằm cùng phía với điểm C đối với đường thẳng AB.
Vì góc BAC = 750 > góc BAE =600 nên tia AE nằm giữa hai tia AB và AC.
Gọi K là trung điểm của AC suy ra AK = KC =BH (gt)
Vì góc BAC = 75 độ nên góc KAE = góc HBA = 15 độ.
Suy ra tam giác HAB = tam giác KEA (c-g-c)
Suy ra góc K = góc H =90 độ
Suy ra tam giác AEC cân tại E, suy ra góc ACE = 15 độ. Suy ra góc AEC = 150 độ.
Suy ra góc BEC = 150 độ (Vì = 360 độ - góc AEC -góc AEB =360 -150-60)
Suy ra tam giác AEC = tam giác BEC (c-g -c)
Suy ra góc BCE =15 độ suy ra góc ACB = 30 độ
Suy ra góc ABC = 75 độ suy ra tam giác ABC cân tại C
a, Ta có:
ADC=ˆA−ˆDAB=90o−30o=60o
Mà ˆC=ˆA−ˆB=90o−30o=60o
Nên ˆADC=ˆC=60o
Do đó ΔADCΔADC là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: ΔADCΔADC là tam giác đều
⇒AD=DC=AC(1)
Mà do AD là trung tuyến của ΔABCΔABC trên AC nên
BD=CD=12BC
Với ΔABCΔABC có ˆA=90oA^=90o và ˆB=30oB^=30o
⇒ˆC=60o⇒C^=60o
Gọi MM là trung điểm của BCBC
Mà ΔABCΔABC có ˆA=90oA^=90o
⇒AM=BM=CM⇒AM=BM=CM ( định lý)
⇒ΔAMC⇒ΔAMC cân tại MM
Mà ˆC=60oC^=60o
⇒ΔAMC⇒ΔAMC đều