Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Tứ giác ADHE là hình chữ nhật (tự chứng minh nhé)
⇒DE=AH⇒DE3=AH3
⇒AH5=AH4.AH=BH2.CH2.AH=BD.BA.CE.CA.AH=BD.CE.AH.BC.AH=BD.CE.BC.AH2
⇒AH3=BD.CE.BC⇔DE3=BD.CE.BC(dpcm)
Tự vẽ hình
a) Xét tứ giác AEHF có: ^EAF=90(gt)
^AFH=90(gt)
^AEF=90(gt)
=> Tứ giac AEHF là hình chữ nhật
Gọi O là giao điểm của AH và EF
Vì AEHF là hcn(cmt)
=> OE=OA
=>\(\Delta\)OAE cân tại O
=>^OAE=^OEA
Xét \(\Delta\)ABH vuông tại H(gt)
=>^B+^OAE=90 (1)
Xét \(\Delta\)ABC vuông tại A(gt)
=>^B+^C=90 (2)
Từ (1) và (2) suy ra: ^OAE=^C
Mà ^OAE=^OEA(cmt)
=>^AEF=^ACB
Xét \(\Delta\)AEF và \(\Delta\)ACB có:
^EAF=^CAB=90(gt)
^AEF=ACB(cmt)
=>\(\Delta\)AEF~\(\Delta\)ACB(g.g)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
=>AE.AB=AF.AC
Từ phần b bạn tự làm nhé (^.^)
A B C H D K
a) Ta có: \(1+1=2\Leftrightarrow\frac{AB^2}{AB^2}+\frac{AC^2}{AC^2}=2\Leftrightarrow\frac{BC^2-AC^2}{AB^2}+\frac{BC^2-AB^2}{AC^2}=2\)
\(\Leftrightarrow\frac{BC^2}{AB^2}+\frac{BC^2}{AC^2}-\frac{AC^2}{AB^2}-\frac{AB^2}{AC^2}=2\)(*)
Lại có: \(\Delta\)DHA ~ \(\Delta\)ABC (g.g) \(\Rightarrow\frac{BC}{AB}=\frac{AH}{HD}\Leftrightarrow\frac{BC^2}{AB^2}=\frac{AH^2}{HD^2}\)(1)
\(\Delta\)ABC ~ \(\Delta\)KAH (g.g) \(\Rightarrow\frac{BC}{AC}=\frac{AH}{HK}\Leftrightarrow\frac{BC^2}{AC^2}=\frac{AH^2}{HK^2}\)(2)
\(\Delta\)ABC ~ \(\Delta\)HBA (g.g) \(\Rightarrow\frac{AC}{AB}=\frac{AH}{BH}\Leftrightarrow\frac{AC^2}{AB^2}=\frac{AH^2}{BH^2}\)(3)
Tương tự: \(\frac{AB}{AC}=\frac{AH}{CH}\Leftrightarrow\frac{AB^2}{AC^2}=\frac{AH^2}{CH^2}\)(4).
Thay hết (1); (2); (3) và (4) vào (*) ta được: \(\frac{AH^2}{HD^2}+\frac{AH^2}{HK^2}-\frac{AH^2}{BH^2}-\frac{AH^2}{CH^2}=2\)
\(\Leftrightarrow\frac{1}{HD^2}+\frac{1}{HK^2}-\frac{1}{BH^2}-\frac{1}{CH^2}=\frac{2}{AH^2}\)(Chia cả 2 vế cho AH2)
\(\Leftrightarrow\frac{1}{HD^2}+\frac{1}{HK^2}=\frac{1}{BH^2}+\frac{1}{CH^2}+\frac{2}{AH^2}\)(đpcm).
b) Ta có: \(\Delta\)ABC ~ \(\Delta\)DBH (g.g) \(\Rightarrow\frac{AB}{AC}=\frac{DB}{DH}\)
\(\Delta\)ABC ~ \(\Delta\)KHC (g.g) \(\Rightarrow\frac{AB}{AC}=\frac{HK}{KC}\). Nhân theo vế 2 hệ thức trên:
\(\Rightarrow\frac{AB^2}{AC^2}=\frac{DB.HK}{KC.DH}\Leftrightarrow\frac{AB^2}{AC^2}.\frac{DH}{HK}=\frac{DB}{KC}\)(5)
Dễ chứng minh tứ giác ADHK là hình chữ nhật \(\Rightarrow\frac{DH}{HK}=\frac{AK}{AD}\)
Mà \(\Delta\)DAK ~ \(\Delta\)CAB (g.g) \(\Rightarrow\frac{AK}{AD}=\frac{AB}{AC}\)\(\Rightarrow\frac{DH}{HK}=\frac{AB}{AC}\)(6)
Từ (6) & (5) \(\Rightarrow\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{DB}{KC}\Leftrightarrow\frac{AB^3}{AC^3}=\frac{DB}{KC}\)(đpcm).
c) Theo hệ thức lượng trong tam giác vuông: \(BH^2=BD.AB;\) \(CH^2=CK.AC\)
\(\Rightarrow\left(BH.CH\right)^2=BD.AB.CK.AC=BD.CK.AB.AC\)
Mặt khác: \(S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow\left(BH.CH\right)^2=BD.CK.BC.AH\).
Lại có: \(AH^2=BH.CH\)(Hệ thức lượng)
\(\Rightarrow AH^4=BD.CK.BC.AH\Leftrightarrow AH^3=BD.CK.BC\)(đpcm).
Kurokawa neko: câu a bạn có thể giải theo hệ thức lượng sẽ ngắn và đơn giản hơn nhiều