Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
~ Mik hỗ trợ làm bài, chú chả bảo anh làm bài này cho :< Giận thật sự :< ~
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
c) Vì tam giác ABD = tam giác AHD ( cmt )
=> BD = DH ( hai cạnh tương ứng )
Vì tam giác AHE = tam giác ABC
=> EH = BC ( hai cạnh tương ứng )
Ta có: BD + DC = BC
DH + ED = EH
Mà EH = BC, BD = DH ( cmt )
=> DC = ED (1)
~ Tự chứng minh tiếp, bài khá gắt ~
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)
a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))
Cạnh huyền AE chung
=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)
b/ Ta có \(\Delta ACE\)= \(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)
Gọi M là giao điểm của AE và CK.
\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)
\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))
Cạnh AM chung
=> \(\Delta ACM\)= \(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)
và\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)
Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)
=> 2\(\widehat{AMC}\)= 180o
=> \(\widehat{AMC}\)= 90o
=> AM \(\perp\)CK (2)
Từ (1) và (2) => AE là đường trung trực của CK (đpcm)
B1:tự vẽ hình:>
b,Xét t/g vg ABH và t/g vg ACK có
AB=AC(vì t/g ABC cân)
Góc A chung
=>t/g ABH=t/g ACK(ch-gn)
c,Ta có:AK+KB=AB
AH+HC=AC
Mà AB=AC,AK=AH(t/gABH=t/gACK)
=>KB=HC(1)
Mặt khác:K1+K2=H1+H2=180o
Mà K1=H1
=>K2=H2(2)
Vì t/g ABH=t/g ACK(cmt)
=>Góc ABH=góc ACK(2 góc t.ư) (3)
Từ(1),(2) và (3)=>t/g OBK=t/g OCH(g.c.g)
c,chưa nghĩ ra
B2,Tự vẽ hình
a,t/g ABC cân tại A
=>Góc ABC=góc ACB(1)
EI // AF => góc EIB = góc ACB(2)
Từ (1) và (2)=>góc ABC=góc EIB
=>t/g BEI cân tại E
b,t/g BEI cân tại E
=>BE=EI mà BE=CF
=>CF=EI
Xét t/g IEO và t/g CFO có
CF=EI
Góc IDE=góc COF (đối đỉnh)
góc CFI=góc OEI
=>t/gIEO=t/gCFO(g.c.g)
=>OE=OF(2 cạnh t.ư)
c,Ta có :ABKC là hình thoi(ABK=ACK=90o)
Mà t/g ABC là t/g cân tại A
=>t/g BKC cân tại K=>BK=KC
Xét t/g CFK và t/g BEK có:
BK=KC
EBK=OCF
CF=BE
=>t/g CFK=t/g BEK(g.c.g)
=>t/g EKF cân tại K
Có OE=OF(cm ở câu b)
=>Ok là trung tuyến EKF
=>OK là trung trực
=>OK vuông EF