Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 \(\Delta\) \(ABE\) và \(MBE\) có:
\(AB=MB\left(gt\right)\)
\(AE=ME\) (vì E là trung điểm của \(AM\))
Cạnh BE chung
=> \(\Delta ABE=\Delta MBE\left(c-c-c\right).\)
b) Theo câu a) ta có \(\Delta ABE=\Delta MBE.\)
=> \(\widehat{ABE}=\widehat{MBE}\) (2 góc tương ứng).
Hay \(\widehat{ABK}=\widehat{MBK}.\)
Xét 2 \(\Delta\) \(ABK\) và \(MBK\) có:
\(AB=MB\left(gt\right)\)
\(\widehat{ABK}=\widehat{MBK}\left(cmt\right)\)
Cạnh BK chung
=> \(\Delta ABK=\Delta MBK\left(c-g-c\right)\)
=> \(\widehat{BAK}=\widehat{BMK}\) (2 góc tương ứng).
Mà \(\widehat{BAK}=90^0\left(gt\right)\)
=> \(\widehat{BMK}=90^0.\)
=> \(KM\perp BM\)
Hay \(KM\perp BC.\)
Chúc bạn học tốt!
xét 2 tam giác ABM=tam giác ACM(c.c.c)(tự cm)
nên góc AMB=góc AMC=180ddooj /2=90 độ
suy ra AM vuông góc vs BC
a) Xét ΔAMBΔAMBvà ΔAMCΔAMCcó :
AM ( cạnh chung )
AB = AC ( gt )
MB = MC ( gt )
Suy ra : ΔAMBΔAMB= ΔAMCΔAMC( c.c.c )
⇒⇒ˆAMB=ˆAMCAMB^=AMC^( hai cạnh tương ứng ) mà ˆAMB+ˆAMC=180oAMB^+AMC^=180o
⇒⇒ˆAMB=ˆAMC=ˆBMC2=90oAMB^=AMC^=BMC^2=90o⇒⇒AM ⊥⊥BC
b) Xét ΔADFΔADFvà ΔCDEΔCDEcó :
DE = DF ( gt )
ˆEDC=ˆFDAEDC^=FDA^( hai góc đối đỉnh )
DA = DC ( gt )
Suy ra : ΔADFΔADF= ΔCDEΔCDE( c.g.c )
⇒ˆFAD=ˆECD⇒FAD^=ECD^( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong nên AF // EC
c) gọi H là giao điểm của BD và AE
Xét ΔAHDΔAHDvuông tại H có : ˆHAD+ˆADH=90oHAD^+ADH^=90o( 1 )
Xét ΔBADΔBAD vuông tại A có : ˆABD+ˆBDA=90oABD^+BDA^=90o( 2 )
Từ ( 1 ) và ( 2 ) ⇒ˆHAD=ˆABD⇒HAD^=ABD^
Xét ΔBADΔBADvà ΔACGΔACGcó :
ˆDBA=ˆGACDBA^=GAC^( cmt )
AB = AC ( gt )
ˆBAD=ˆACGBAD^=ACG^( = 90o90o)
Suy ra : ΔBADΔBAD= ΔACGΔACG( g.c.g )
⇒AD=CG⇒AD=CG( hai cạnh tương ứng )
Mà AD=DC=AC2AD=DC=AC2
⇒CG=AC2=AB2⇒CG=AC2=AB2( vì AB = AC )
⇒AB=2CG
mk chưa hok tam giác cân