Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AHMK có
góc AHM=góc AKM=góc HAK=90 độ
=>AHMK là hình chữ nhật
2:
a: Xét ΔABC có
M là trung điểm của BC
MH//AC
Do đó: H là trung điểm của AB
b: Xét ΔABC có
M là trung điểm của CB
MK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có MK//AB
nên MK/AB=CM/CB=1/2
=>MK=1/2AB=HB
Xét tứ giác BHKM có
BH//KM
BH=KM
Do đó: BHKM là hình bình hành
=>BK cắt HM tại trung điểm của mỗi đường
=>B,E,K thẳng hàng
3:
a: Xét tứ giác ABMD có
AB//DM
AD//BM
Do đó: ABMD là hình bình hành
=>AD=MB=AM
b: Xét tứ giác AMCD có
AM//CD
AM=CD
AD=AM
Do đó: AMCD là hình thoi
Bn tự vẽ hình nha
a, xét tứ giác AHMK có
góc MHA=90 độ( MH ⊥ Ab-gt)
góc MKA=90 độ( MK⊥ AC-gt)
góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)
-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)
Tớ chỉ lm đc câu a thui nếu đúng like cho tớ nha
1)Vì \(\Delta ABC\)vuông tại A (gt) => \(\widehat{BAC=90^0}hay\widehat{HÂ}K=90^0\)
Vì MH vông góc với AB tại H ( gt)
=>\(\widehat{MHA=90^0}\)
Vi MK vuông góc với AC tại K ( gt)
=> \(\widehat{MKA=90^0}\)
Xét tứ giác AMHK có :
\(\widehat{MKA=90^0\left(cmt\right)}\)
\(\widehat{MHA=}90^0\left(cmt\right)\)
\(\widehat{HAK=90^0\left(cmt\right)}\)
=> AMHK là hình chữ nhật ( dấu hiệu nhận biết)(đpcm)
2)a. Có : MH vuông góc với AB ( gt )
AC vuông góc với AB ( \(\Delta\)ABC vuông tại A)
=> MH//AC
Xét tam giác ABc có
MH//AC( cmt)
M là trung điểm BC (gt)
=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
b. Có: MK vuông góc AC ( gt)
AB vuông góc AC( tam giác ABC vuông tại A )
=> MK//AB
Có:MK//AB(cmt)
M là trung điểm BC ( gt)
=> K là trung điểm AC ( định lý đường trung bình của tam giác )
Có : H là trung điểm AB ( cmt)
=. BH=\(\frac{1}{2}AB\)
Xét tam giác ABC có
M là trung điểm BC(cmt)
K là trung điểm AC ( cmt)
=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)
=> MK=\(\frac{1}{2}AB\)( tính chất đường trung bình của tam giác)
=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH
Có MK=\(\frac{1}{2}AB\)
BH= \(\frac{1}{2}AB\)
=> MK=BH
Mà MK//BH(cmt)
=> BMKH là hình bình hành
VÌ BMKH là hình bình hành (cmt)
=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường
Mà E là trung điểm HM ( gt)
=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)
3)a.Có MK//AB(cmt)
D thuộc MK
=> MD//AB
Có : BC//Ax( gt)
M thuộc BC; D thuộc Ax
=> BM//AD
Xét tứ giác ABMD có :
AB//MD(cmt)
BM//AD(cmt)
=> ABMD là hình bình hành (dấu hiệu nhận biết)
Xét tam giác ABC vuộng tại A có
M là trung điểm BC( gt)
=> AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}BC\)(tính chất )
Có M là trung điểm BC
=> BM=\(\frac{1}{2}BC\)
Mà AM=\(\frac{1}{2}BC\)
=> BM= AM
Vì ABMD là hình bình hành (cmt)
=> BM= AD(tính chất hình bình hành)
MÀ BM=AM
=> AD=AM(đpcm)
b.Xét tam giác AMD có
AM=AD(cmt)
=> Tam giác AMD cân tại A
Có AC vuông góc MK => AK vuông góc MD và AC vuông góc MD
Xét tam giác AMD cân tại A có :
AK vuông góc MD
=> AK là đường cao đồng thời là đường trung tuyến của tam giác AMD
Có AK là đường trung tuyến của tam giác AMD
=> K là trung điểm MD
Xét tứ giác AMCD có
K là trung điểm AC ( cmt0
K là trung điểm MD(cmt)
=> AMCD là hình bình hành (dấu hiệu nhận biết)
Mà đường chéo AC vuông góc với đương chéo MD
=> AMCD là hình thoi ( dấu hiệu nhận biết)
tưởng gì
a, xét tứ giác AHMK có
góc MHA=90 độ( MH ⊥ Ab-gt)
góc MKA=90 độ( MK⊥ AC-gt)
góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)
-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn) b)Có : MH vuông góc với AB ( gt )
AC vuông góc với AB (
Δ
ABC vuông tại A)
=> MH//AC
Xét tam giác ABc có
MH//AC( cmt)
M là trung điểm BC (gt)
=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)
AB vuông góc AC( tam giác ABC vuông tại A )
=> MK//AB
Có:MK//AB(cmt)
M là trung điểm BC ( gt)
=> K là trung điểm AC ( định lý đường trung bình của tam giác )
Có : H là trung điểm AB ( cmt)
=. BH=1/2AB
Xét tam giác ABC có
M là trung điểm BC(cmt)
K là trung điểm AC ( cmt)
=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)
=> MK=1/2AB
( tính chất đường trung bình của tam giác)
=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH
Có MK=1/2AB
BH= 1/2AB
=> MK=BH
Mà MK//BH(cmt)
=> BMKH là hình bình hành
c)VÌ BMKH là hình bình hành (cmt)
=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường
Mà E là trung điểm HM ( gt)
=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)
a: Xét tứ giác AHMK có
\(\widehat{AHM}=\widehat{AKM}=\widehat{HAK}=90^0\)
=>AHMK là hình chữ nhật
=>AM=HK
b: Xét ΔABC có
M là trung điểm của BC
MK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MH//AC
Do đó: H là trung điểm của AB
Xét ΔABC có
M,K lần lượt là trung điểm của CB,CA
=>MK là đường trung bình của ΔABC
=>MK//AB và \(MK=\dfrac{AB}{2}\)
Ta có: MK//AB
H\(\in\)AB
Do đó: MK//HB
Ta có: \(MK=\dfrac{AB}{2}\)
\(AH=HB=\dfrac{AB}{2}\)
Do đó: MK=AH=HB
Xét tứ giác BHKM có
BH//KM
BH=KM
Do đó: BHKM là hình bình hành
c: Gọi O là giao điểm của AM và KH
Ta có: AHMK là hình chữ nhật
=>AM cắt KH tại trung điểm của mỗi đường
=>O là trung điểm của AM và KH
=>\(OA=OM=\dfrac{AM}{2};OK=OH=\dfrac{KH}{2}\)
mà AM=KH
nên OA=OM=OK=OH(1)
Xét ΔAKM có
AF,KO là các đường trung tuyến
AF cắt KO tại D
Do đó: D là trọng tâm của ΔAKM
Xét ΔAKM có
D là trọng tâm
KO là đường trung tuyến
Do đó: \(KD=\dfrac{2}{3}KO\left(2\right)\)
Xét ΔHAM có
AE,HO là các đường trung tuyến
AE cắt HO tại I
Do đó: I là trọng tâm của ΔHAM
Xét ΔHAM có
HO là đường trung tuyến
I là trọng tâm
Do đó: \(HI=\dfrac{2}{3}HO\left(3\right)\)
Từ (1),(2),(3) suy ra HI=KD
HÌnh bạn tự vẽ nha.
1/Theo định lí đường tb của hình thang thì:
CK=\(\frac{AB+EM}{2}=\frac{10+14}{2}=12\)
2/a/Ta có:TỨ giác AHMK có \(\hept{\begin{cases}gócA=90^o\\gócH=90^o\\gócK=90^o\end{cases}}\)
MÀ AHM+HMK+MKA+KAH=3600 \(\Rightarrow\) HMK=90o
\(\Rightarrow\)Tứ Giác AHMK là HÌnh Chữ Nhật
b/c/d/cm đó dễ mà bạn tự làm đi.
dạ cô vẽ dùng em hình
a, xét tứ giác AHMK có
góc MHA=90 độ( MH ⊥ Ab-gt)
góc MKA=90 độ( MK⊥ AC-gt)
góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)
-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)2). Có : MH vuông góc với AB ( gt )
AC vuông góc với AB (
Δ
ABC vuông tại A)
=> MH//AC
Xét tam giác ABc có
MH//AC( cmt)
M là trung điểm BC (gt)
=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)
AB vuông góc AC( tam giác ABC vuông tại A )
=> MK//AB
Có:MK//AB(cmt)
M là trung điểm BC ( gt)
=> K là trung điểm AC ( định lý đường trung bình của tam giác )
Có : H là trung điểm AB ( cmt)
=. BH=1/2AB
Xét tam giác ABC có
M là trung điểm BC(cmt)
K là trung điểm AC ( cmt)
=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)
=> MK=1/2AB
( tính chất đường trung bình của tam giác)
=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH
Có MK=1/2AB
BH= 1/2AB
=> MK=BH
Mà MK//BH(cmt)
=> BMKH là hình bình hành
VÌ BMKH là hình bình hành (cmt)
=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường
Mà E là trung điểm HM ( gt)
=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)
mình tự làm ne chắc do mạng mình bị lỗi bắm nhầm phải