Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
b: Xét tứ giác DHEF có
HE//DF
HE=DF
Do đó: DHEF là hình bình hành
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
b: FA=FD
FA=HE
=>HE=FD
Xét tứ giác HEFD có
HE//FD
HE=FD
=>HEFD là hình bình hành
c: Sửa đề: MP vuông góc AB
M đối xứng G qua AB
=>MG vuông góc AB tại trung điểm của MG
=>MG vuông góc AB tại P và P là trung điểm của MG
XétΔABC có
M là trung điểm của BC
MP//AC
=>P là trung điểm của AB
Xét tứ giác AMBG có
P là trung điểm chung của AB và MG
MA=MB
=>AMBG là hình thoi
M đối xứng K qua AC
=>MK vuông góc AC tại trung điểm của MK
=>Q là trung điểm của MK
Xét ΔABC có
M là trung điểm của BC
MQ//AB
=>Q là trung điểm của AC
Xét tứ giác AMCK có
Q là trung điểm chung của AC và MK
MA=MC
=>AMCK là hình thoi
A B C H
Giải: a) Ta có : \(S_{\Delta ABC}\)= \(\frac{AH.BC}{2}\) (1)
\(S_{\Delta ABC}\)= \(\frac{AB.AC}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)
b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)
Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625
=> BC = 25
Ta có: AH.BC = AB.AC (cmt)
hay AH. 25 = 15.20
=> AH.25 = 300
=> AH = 300 : 25
=> AH = 12
c) chưa hc
a,Tứ giác AEHG la hình chữ nhật.thật vậy:
xét tứ giác AEHG có goc a=90 độ ,góc E=90 độ(HE VUÔNG GÓC VỚI AB) , góc H=90 độ (AH vuông góc với BC)
suy ra tứ giác AEHG la hình chữ nhật
b,xét tam giac BHA có AH^2=AE*AB (1)
xét tam giác AHC có AH^2=AF*AC (2)
Từ (1) và (2) suy ra AE*AB=AF*AC