K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

22 tháng 8 2023

Bạn tự vẽ hình.

(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)

+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)

(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)

\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.

Do đó, \(EF=AH\left(đpcm\right)\)

22 tháng 8 2023

ok bn

 

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.Bài 3:...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7 2024

Gì nhiều vậy???

 

8 tháng 8 2017

bạn nào biết trả lời nhanh nha. mình đang cần gấp . cảm ơn

10 tháng 8 2017

   A B C H M E F N I

A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH\)

Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=BC^2-AC^2=\frac{AB^2AC^2}{AH^2}-AC^2\Rightarrow15^2=\frac{15^2.\frac{25}{9}AH^2}{AH^2}-AC^2\)

\(\Rightarrow AC^2=400\Rightarrow AC=20\left(cm\right)\Rightarrow BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(\Rightarrow HB=\frac{AB^2}{BC}=9\left(cm\right);HC=BC-BH=25-9=16\left(cm\right)\)

b.Vì E;F là hình chiếu của H lên AB;AC \(\Rightarrow\widehat{E}=\widehat{F}=\widehat{A}=90^0\Rightarrow AEHF\)là hình chữ nhật

c. Gỉa sử \(AM⊥EF\)\(\Rightarrow\)ta phải chứng minh M là trung điểm BC

Gọi I là giao điểm của EF và AH ;   N là giao của EF và AM

Xét tam giác AIN và tam giác AHM 

có \(\hept{\begin{cases}\widehat{A}chung\\\widehat{N}=\widehat{H}=90^0\end{cases}\Rightarrow\Delta AIN~\Delta AHM\left(g-g\right)\Rightarrow\widehat{AIN}=\widehat{AMH}\left(1\right)}\)

Xét tam giác AEF và tam giác ACB có \(\hept{\begin{cases}\widehat{A}=90^0chung\\\widehat{C}=\widehat{E}\left(+\widehat{B}=90^0\right)\end{cases}\Rightarrow\Delta AEF~\Delta ACB\left(g-g\right)\Rightarrow\widehat{AFE}=\widehat{B}\left(2\right)}\)

Vì AEHF là hình chữ nhật nên \(\widehat{IFA}=\widehat{IAF}\left(3\right)\)

Lại có \(\widehat{AIF}=180^0-2.\widehat{IFA}\)

Từ (1) ;(2) và (3) \(\Rightarrow\widehat{AMB}=180^0-2.\widehat{B}\Rightarrow\Delta AMB\)cân tại M \(\Rightarrow MA=MB\)

Tương tự chứng minh được \(MA=MC\)\(\Rightarrow M\)là trung điểm BC

Vậy trung tuyến AM vuông góc với EF

d. Gỉa sử tam giác ABC vuông cân \(\Leftrightarrow AB=AC\Rightarrow S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AB^2\left(4\right)\)

\(\Delta ABC\)vuông cân \(\Leftrightarrow AE=AF\Rightarrow S_{AEHF}=AE.AF=AE^2=\frac{1}{4}AB^2\Rightarrow2S_{AEHF}=\frac{1}{2}AB^2\left(5\right)\)

Từ (4) và (5) ta có \(S_{ABC}=2S_{AEHF}\)đúng với giả thiết ban đầu 

Vậy giả sử \(S_{ABC}=2S_{AEHF}\)thì tam giác ABC vuông cân  

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

a: BC=BH+CH=25cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

b: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

3 tháng 7 2021

a) Ta có: \(\dfrac{HB}{HC}=\dfrac{HB.HC}{HC^2}=\dfrac{HA^2}{HC^2}=\left(\dfrac{HA}{HC}\right)^2\)

Xét \(\Delta AHC\) và \(\Delta BAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AHC=\angle BAC=90\\\angle ACBchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\dfrac{HA}{HC}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{c^2}{b^2}\)

b) tham khảo ở đây:https://hoc24.vn/cau-hoi/cho-dabc-vuong-tai-a-duong-cao-ah-goi-e-f-lan-luot-la-cac-hinh-chieu-cua-h-tren-ab-va-ac-cmra-aeabaf.1150118751274

3 tháng 7 2021

a) Áp dụng hệ thức lượng trong tam giác vuông có:

\(AB^2=BH.BC\)

\(AC^2=CH.CB\)

\(\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{c^2}{b^2}\)

b) Áp dụng hệ thức lượng trong tam giác vuông có:

\(BH^2=BE.BA\)

\(CH^2=CF.CA\)

\(\Rightarrow\dfrac{BH^2}{CH^2}=\dfrac{BE}{CF}.\dfrac{BA}{CA}\)\(\Leftrightarrow\dfrac{c^4}{b^4}=\dfrac{BE}{CF}.\dfrac{c}{b}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{c^3}{b^3}\)

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K