Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét ΔABM và ΔCKM có:
MA=MC(gt)
MB=MK(gt)
góc BMA= góc CMK( 2 góc đối đỉnh )
=>ΔABM=ΔCKM( c.g.c)
=> góc MAB= góc MCK=90o
=>KC vuông góc với AC
b) Xét ΔBMC và ΔKMA có:
MA=MC(gt)
góc BMC= góc AMK( 2 góc đối đỉnh )
=>ΔBMC=ΔKMA(c.g.c)
=> góc MBC= góc MKA
=>BC//AK
a) Ta có: A1ˆ+A2ˆ+A3ˆ=180o( góc bẹt )
⇒A1ˆ+A3ˆ=90o( do A2ˆ=90o ) (1)
Trong ΔAKC có: A3ˆ+C1ˆ=90o( do Kˆ=90o) (2)
Từ (1) và (2) ⇒A1ˆ=C1ˆ
Xét ΔAHB,ΔCKA có:
A1ˆ=C1ˆ(cmt)
AB = AC ( gt )
H^=K^=90o
⇒ΔAHB=ΔCKA( c.huyền - g.nhọn )
⇒AH=CK( cạnh t/ứng ) ( đpcm )
b) Vì ΔAHB=ΔCKA
⇒BH=AK,AH=CK( cạnh t/ứng )
Ta có: HK=AK+AH=BH+CK(đpcm)
Vậy...
Chúc bạn học tốt
A B C K E D H
a) Xét tam giác AKB và tam giác AKE
có BK = KE (gt)
\(\widehat{BKA}=\widehat{EKA}=90^0\)(gt)
AK : chung
=> tam giác AKB = tam giác AKE
b) Ta có: \(\widehat{BAK}=\widehat{ACB}\) (vì cùng phụ \(\widehat{KAC}\))
c) Ta có: Tam giác AKB = tam giác AKE (cmt)
=> \(\widehat{ABE}=\widehat{BEA}\) mà \(\widehat{BEA}=\widehat{DEC}\)(đối đỉnh)
=> \(\widehat{ABE}=\widehat{DEC}\)
Xét tam giác DEC vuông tại D có \(\widehat{DEC}+\widehat{ECD}=90^0\)
Xét tam giác ABK vuông tại K có \(\widehat{KBA}+\widehat{BAK}=90^0\)
mà \(\widehat{ABK}=\widehat{DEC}\) (cmt) => \(\widehat{BAK}=\widehat{ECD}\)
mà \(\widehat{BAK}=\widehat{ACB}\)(cm câu b)
=> \(\widehat{ACB}=\widehat{BCD}\) => CB là p/giác của góc ACD
d) Xét tam giác AHC có CK và AD là 2 đườn cao cắt nhau tại E => E là trực tâm
=> HE là đường cao thứ 3 => HE vuông góc với AC
mà BA vuông góc với AC
=> HE // AB