K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADB\)và \(\Delta AEB\)có:

AD = AE (gt)

\(\widehat{BAD}=\widehat{BAE}\)(= 90o)

Cạnh AB chung

=> \(\Delta ADB\)\(\Delta AEB\)(c. g. c)

=> DB = EB (hai cạnh tương ứng) (đpcm)

b/ \(\Delta DBC\)có: DI vừa là đường cao vừa là đường trung tuyến

=> \(\Delta DBC\)cân tại A

Ta có \(\widehat{BDE}=\widehat{DBC}+\widehat{DCB}\)

Mà DB = EB (cm câu a)

nên \(\Delta BED\)cân tại A

=> \(\widehat{BDE}=\widehat{BED}\)

và \(\widehat{DBC}=\widehat{DCB}\)(\(\Delta DBC\)cân tại A)

=> \(\widehat{BED}=2\widehat{DCB}\)(đpcm)

2 tháng 5 2023

làm sai hết rồi

28 tháng 3 2020

F A D E B C

a) Xét tam giác ABR và tam giác ABD có : 

AE=AD ( gt ) 

AB chung 

=> Tam giác ABE =Tam giác ABD ( 2 cạnh góc vuông ) 

=> BD = BE ( đpcm ) 

b) Ta có : DI là t2 BC 

=> DB = DC => góc DBC = góc DCB 

=> góc BDE = góc DBC  + góc DCB = 2.  góc DCB 

Mà góc BDE = góc BEC  ( sao cho BDE cân ) 

=> góc BEC = 2. góc ECB 

c) Ta có : góc AIB  = góc IAC  + góc ICA 

mà I là trung điểm BC 

=> IA = IB = IC => tam giác IAC cân tại I 

=> góc C1 = góc A=> góc AIB =2. góc C1 

=> góc AIB =  góc AEC 

=> tam giác EIB \(\infty\)tam giác CEB ( góc B chung ; góc E  = góc I ) 

=> góc BFI = góc BCE  hay góc A1 = góc BFI 

mà góc A1 =góc A2 => góc BFI = góc A2 

=> tam giác EFA cân tại E 

=> tam giác AEF cân ( đpcm ) 

28 tháng 3 2020

góc AIB làm sao bằng góc AEC

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:a, - 120x5y4 b, 60x6y2 c, -5x15y3Bài 2: Điền đơn thức thích hợp vào chỗ trống:a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5Bài 3: Thu gọn các đơn thức sau:a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2Bài 4: Cho tam giác ABC vuông tại A (AC>AB)....
Đọc tiếp

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân

0
28 tháng 8 2020

Bài 1 :                                                             Bài giải

A B C H D F E

Bài 2 :                                                           Bài giải

A C B D E I F

Bài 3 :                                                     Bài giải

A B C D E 1 2 H I

Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có : 

\(BA=BE\) ( gt )

\(BD\) : cạnh chung

\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )

\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)

\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)

....

Tự làm tiếp nha ! Mình bận rồi !

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có

=> AB = 3 cm

Mà AB = AD ( gt)

=> AB = AD = 3cm

b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:

=> DC = 5 cm

=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :

AB = AD 

BC = CD (5cm)

=> Tam giác CAB = tam giác CAD(cgv-ch)

c) Vì BC//DE

=> BCM = MDE (so le trong)

Xét tam giác BMC và tam giác DME ta có :

DM = MC 

BCM = MDE(cmt)

DME = BMC 

=> Tam giác BMC = tam giác DME (g.c.g)

=> BC=DE(dpcm)

d)chịu

19 tháng 4 2020

Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB

a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC

b, Chứng minh tam giác CBD cân

c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE

d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM

                                         Giải

a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có

=> AB = 3 cm

Mà AB = AD ( gt)

=> AB = AD = 3cm

b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:

=> DC = 5 cm

=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :

AB = AD 

BC = CD (5cm)

=> Tam giác CAB = tam giác CAD(cgv-ch)

c) Vì BC//DE

=> BCM = MDE (so le trong)

Xét tam giác BMC và tam giác DME ta có :

DM = MC 

BCM = MDE(cmt)

DME = BMC 

=> Tam giác BMC = tam giác DME (g.c.g)

=> BC=DE(dpcm)

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB