Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của BC
I là trung điểm của AC
Do đó: MI là đường trung bình của ΔABC
Suy ra: MI//AB
hay MI\(\perp\)AC
Xét ΔCIM vuông tại I và ΔAID vuông tại I có
IC=IA
\(\widehat{ICM}=\widehat{IAD}\)
Do đó: ΔCIM=ΔAID
Suy ra: IM=ID
hay I là trung điểm của MD
Xét tứ giác AMCD có
I là trung điểm của MD
I là trung điểm của AC
Do đó: AMCD là hình bình hành
mà MD\(\perp\)AC
nên AMCD là hình thoi
Mình không biết vẽ hình trên đây nên bạn thông cảm nhé
a,Vì AM là đường trung tuyến của tam giác ABC
=>BM=CM
Xét tam giác CBD có:
BM=CM
CN=DN(N là trung điểm của DC)
=>MN là đường trung bình của tam giác CBD
=> MN//BD
=>MN//ID
Xét tam giác AMN có:
AI=MI(I là trung điểm của AM)
ID//MN
=>AD=ND hay D là trung điểm của AN(định lý về đường trung bình trong tam giác)
b, Xét tam giác CBD có:
BM=CM
CN=DN(N là trung điểm của DC)
=>MN là đường trung bình của tam giác CBD
=>BD=2MN
c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có:
AC2=BC2-AB2
=>AC2=132-52
=>AC2=144
=>AC=12(cm)
Ta có: AD=\(\frac{1}{3}\)AC( vì AD=DN=NC)
=>AD=4(cm)
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại A, ta có:
BD2=AB2+AD2
BD2=52+42
BD2=41
BD=6,4(cm)(xấp xỉ thôi nha)
d, Vì BD=2MN(câu b)
=>MN=\(\frac{BD}{2}=\frac{6,4}{2}=3,2\)(cm)
Xét tam giác AMN có:
AI=MI(I là trung điểm của AM)
AD=ND(D là trung điểm của AN)
=>ID là đường trung bình của tam giác AMN
=>MN=2ID
=>ID=\(\frac{MN}{2}=\frac{3,2}{2}=1,6\)(cm)
mà BD=BI+ID
=>BI=BD-ID
=>BI=6,4-1,6
=>BI=4,8(cm)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A