Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ΔABE = ΔDBE.
Xét hai tam giác vuông ABE và DBE có:
BA = BD (gt)
BE là cạnh chung
Do đó: ΔABE = ΔDBE (cạnh huyền - cạnh góc vuông)
b) BE là đường trung trực của AD.
Gọi giao điểm của AD và BE là I .
Vì ΔABE = ΔDBE (câu a) ⇒ ∠B1 = ∠B2 ( hai góc tương ứng)
Xét ΔABI và ΔDBI có:
BA = BD (gt)
∠B1 = ∠B2 (cmt)
BI : cạnh chung.
Do đó: ΔABI = ΔDBI (c - g - c)
⇒ AI = DI (hai cạnh tương ứng) (1)
∠I1 = ∠I2 (hai góc tương ứng) mà ∠I1 + ∠I2 = 180°
⇒ ∠I1 = ∠I2 = 180° : 2 = 90°
Hay BE ⊥ AD (2)
Từ (1) và (2) suy ra: BE là đường trung trực của AD
c) ΔBCF cân.
Vì ΔABE = ΔDBE (câu a) ⇒ AE = DE (hai cạnh tương ứng)
Xét hai tam giác vuông AEF và DEC có:
AE = DE (cmt)
∠E1 = ∠E2 (đối đỉnh)
Do đó: ΔAEF = ΔDEC (cạnh góc vuông - góc nhọn kề)
⇒ AF = CD (hai cạnh tương ứng)
Ta có: BF = AB + AF và BC = BD + DC (3)
Mà: BA = BD (gt) và AF = DC (cmt) (4)
Từ (3) và (4) suy ra: BF = BC
Hay ΔBFC cân tại B.
d) B, E, H thẳng hàng.
Vì ∠B1 = ∠B2 (câu b)
Nên BE là phân giác của góc B (5)
Xét ΔFBH và ΔCBH có:
BF = BC (câu c)
FH = HC (trung điểm H của BC)
BH : chung
Do đó: ΔFBH = ΔCBH (c - c - c)
⇒ ∠FBH = ∠CBH (hai góc tương ứng)
⇒ BH là phân giác của góc B (6)
Từ (5) và (6) suy ra: B, E, H thẳng hàng.
a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:
\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)
Ủng hộmi nha
A B C D E
a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm
\(\Rightarrow BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=10\)
Suy ra cạnh BC = 10cm
b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:
\(\widehat{BAC}=\widehat{DEB}=90^o\)
\(\widehat{B}\)chung
\(BD=BC\left(gt\right)\)
\(\Rightarrow\Delta BAC=\Delta BED\)
Vậy...
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}=90^0\)
=>DE\(\perp\)DB tại D
=>DE\(\perp\)BC tại D
b:
ΔBAE=ΔBDE
=>EA=ED
Xét ΔEAF vuông tại A và ΔEDC vuông tại E có
EA=ED
\(\widehat{AEF}=\widehat{DEC}\)
Do đó: ΔEAF=ΔEDC
=>AF=DC
Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BD}{DC}\)
nên AD//CF
sdfgbnerfghjrtyuiocfvbnm
A B C D E F
a) Xét t/giác ABE và t/giác DBE
có AB = BD (gt)
góc BAE = góc BDE = 900 (gt)
BE : chung
=> t/giác ABE = t/giác DBE (ch - cgv)
b) Ta có: t/giác ABE = t/giác DBE (cmt)
=> góc ABE = góc DBE (hai góc tương ứng)
=> BE là tia p/giác của góc ABD
hay BE là tia p/giác của góc ABC
c) Xét t/giác AEF và t/giác DEC
có góc FAE = góc CDE = 900 (gt)
AE = ED (Vì t/giác ABE = t/giác DBE)
góc AEF = góc DEC (đối đỉnh)
=> t/giác AEF = t/giác DEC (g.c.g)
=> EF = CF (hai cạnh tương ứng)
=> t/giác CEF là t/giác cân
d) Ta có: t/giác AEF = t/giác DEC (cmt)
=> AF = DC (hai cạnh tương ứng)
Mà AB + AF= BF
BD + DC = BC
Và AB = BD (gt)
=> BF = BC
=> t/giác BFC cân tại B
=> góc F = góc C = (1800 - góc B)/2 (1)
Ta lại có AB = BD (gt)
=> t/giác ABD cân tại B
=> góc BAD = góc BDA = (1800 - góc B)/2 (2)
Từ (1) và (2) suy ra góc BAD = góc F
mà góc BAD và góc F ở vị trí đồng vị
=> AD // CF (Đpcm)