Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B D E M J X
Ta thấy \(\widehat{ABD}=\widehat{ABC}+\widehat{CBD}=90^o\)
\(\widehat{EBC}=\widehat{DBE}+\widehat{CBD}=90^o\)
\(\Rightarrow\widehat{ABC}=\widehat{DBE}\)
Xét tam giác ABC và tam giác DBE có :
AB = DB
BC = BE
\(\widehat{ABC}=\widehat{DBE}\)
\(\Rightarrow\Delta ABC=\Delta DBE\left(c-g-c\right)\)
\(\Rightarrow\widehat{BDE}=\widehat{BAC}=90^o\)
Gọi J là trung điểm BE.
Xét tam giác vuông BDE có DJ là trung tuyến ứng với cạnh huyền nên JB = JD = JE
Xét tam giác vuông cân BEC có M là trung điểm EC nên BM cũng là đường cao hay \(\widehat{BME}=90^o\)
Xét tam giác vuông BME có MJ là trung tuyến ứng với cạnh huyền nên JB = JE = JM.
Ta thấy ngay tam giác BME vuông cân tại M. Vậy nên \(\widehat{MJE}=90^o\)
Vẽ tia Jx là tia đối của tia JD.
Ta thấy \(\widehat{MDE}=\widehat{MDJ}-\widehat{EDJ}=\frac{\widehat{MJx}}{2}-\frac{\widehat{EJx}}{2}=\frac{\widehat{MJE}}{2}=45^o\)
Tam giác ABD vuông cân nên \(\widehat{BDA}=45^o\)
Vậy nên \(\widehat{ADM}=\widehat{ADB}+\widehat{BDE}+\widehat{EDM}=45^o+90^o+45^o=180^o\)
hay A, D, M thẳng hàng.
\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^o+60^o=150^o\)
Ta có
AB=AC (tg ABC cân)
AE=AC (Tg ACE là tg đều)
=> AB=AE => tam giác ABE cân tại A
\(\Rightarrow\widehat{ABE}=\widehat{AEB}=\frac{\left(180^o-\widehat{BAE}\right)}{2}=\frac{180^o-150^o}{2}=15^o\)
Xét tg cân ABD ta có
\(\widehat{ABD}=\widehat{BAD}=\frac{\left(180^o-\widehat{ADB}\right)}{2}=\frac{180^o-150^o}{2}=15^o\)
Suy ra từ B có 2 đoạn thẳng BE bà BD cùng tạo với AB 1 góc 15 độ => BD trùng BE nên B; D; E thẳng hàng
Câu a (1,0đ) Chứng minh :ABD = ACE
Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt) (0,25đ) x3=(0,75đ)
Vậy ABD = ACE(cgc) (0,25đ)
Câu b (0,75đ) Chứng minh đúng vuông AMD = vuông ANE vì có AD = AE;
(do ABD =ACE) (0,5đ)
Kết luận AMD = ANE và suy ra AM =AN) (0,25đ)
Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE (cạnh huyền - góc nhọn )(0,25đ)
Lập luận chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)
Từ lập luận để (2)
Kết hợp (1)và (2) KDE đều )(0,25đ)