\(\frac{MA^2}{MB^2+MC^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 7 2021

Do tính đối xứng, ko mất tính tổng quát, giả sử M nằm giữa B và H

ABC vuông cân \(\Rightarrow AH\) đồng thời là trung tuyến

\(\Rightarrow AH=\dfrac{1}{2}BC\Rightarrow AH=BH=CH\)

Ta có:

\(\dfrac{MA^2}{MB^2+MC^2}=\dfrac{MA^2}{\left(BH-HM\right)^2+\left(CH+MH\right)^2}=\dfrac{MA^2}{\left(AH-MH\right)^2+\left(AH+MH\right)^2}\)

\(=\dfrac{MA^2}{2\left(AH^2+MH^2\right)}=\dfrac{MA^2}{2MA^2}=\dfrac{1}{2}\)

NV
6 tháng 7 2021

undefined

NV
5 tháng 7 2021

Do tính đối xứng, không mất tính tổng quát, giả sử M nằm giữa B và H

ABC vuông cân \(\Rightarrow BH=CH=AH\)

Ta có:

\(\dfrac{MA^2}{MB^2+MC^2}=\dfrac{MA^2}{\left(BH-MH\right)^2+\left(CH+MH\right)^2}=\dfrac{MA^2}{\left(BH-MH\right)^2+\left(BH+MH\right)^2}\)

\(=\dfrac{MA^2}{2\left(BH^2+MH^2\right)}=\dfrac{MA^2}{2\left(AH^2+MH^2\right)}=\dfrac{MA^2}{2MA^2}=\dfrac{1}{2}\)

24 tháng 9 2017

Từ MM kẻ MEME vuông góc với ABAB, MFMF vuông góc với ACAC.

Ta có ΔEBMΔEBM vuông cân tại EE, ΔFMCΔFMC vuông cân tại FF và AEMFAEMF là hình chữ nhật.

Áp dụng định lý PytagoPytago vào các tam giác EBM,FMC,AEFEBM,FMC,AEF, ta có:

BM2=EM2+BE2=2ME2;MC2=2FM2⇒BM2+MC2=2(ME2+MF2)BM2=EM2+BE2=2ME2;MC2=2FM2⇒BM2+MC2=2(ME2+MF2)                (1)

Mà AM2=EF2=ME2+MF2AM2=EF2=ME2+MF2             (2)

Từ (1),(2)(1),(2) ta có dpcmdpcm

Ozx6MO0.jpg

24 tháng 9 2017

Từ MM kẻ ME vuông góc với ABAB, MFMF vuông góc với ACAC.

Ta có ΔEBM vuông cân tại E, ΔFMC vuông cân tại F và AEMF là hình chữ nhật.

Áp dụng định lý Pytago vào các tam giác EBM,FMC,AEF, ta có:

BM2=EM2+BE2=2ME2;MC2=2FM2⇒BM2+MC2=2(ME2+MF2)BM2=EM2+BE2=2ME2;MC2=2FM2⇒BM2+MC2=2(ME2+MF2)                (1)

Mà AM2=EF2=ME2+MF2AM2=EF2=ME2+MF2             (2)

Từ (1),(2)(1),(2) ta có dpcm

Ozx6MO0.jpg

19 tháng 5 2016

bai 1/ 

pt <=> x+\(\sqrt{3-x^2}\)=x\(\sqrt{3-x^2}\)<=> x=\(\sqrt{3-x^2}\)(x-1) (*)

nhan thay x=1 ko la n0 cua pt nen chia ca 2 ve cua (*) cho x-1 dc

\(\frac{x}{x-1}\)=\(\sqrt{3-x^2}\)

binh phg 2 ve va thu goc ta duoc pt x^4 - 2x^3 - x^2 + 6x - 3 = 0

<=> (x^2-3x+3)(x^2+x-1)=0

ban tu giai tiep