K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BMCD có

N là trung điểm chung của BC và MD

=>BMCD là hình bình hành

b: Ta có: BMCD là hình bình hành

=>BM//CD và BM=CD

Ta có: BM//CD

M\(\in\)AB

Do đó: AM//CD

ta có: BM=CD

AM=MB

Do đó: AM=CD

Xét tứ giác AMDC có

AM//DC

AM=DC

Do đó: AMDC là hình bình hành

Hình bình hành AMDC có \(\widehat{MAC}=90^0\)

nên AMDC là hình chữ nhật

c: Ta có: AMDC là hình chữ nhật

=>\(\widehat{DMA}=90^0\)

=>DM\(\perp\)AB tại M

Xét ΔDBA có

DM là đường cao

DM là đường trung tuyến

Do đó: ΔDBA cân tại D

loading...

2 tháng 11 2018

LÀ CON CẶC

26 tháng 10 2023

a: Xét tứ giác AIMJ có

\(\widehat{AIM}=\widehat{AJM}=\widehat{JAI}=90^0\)

=>AIMJ là hình chữ nhật

b: AIMJ là hình chữ nhật

=>MI//AJ và MI=AJ

MI=AJ

MN=MI

Do đó: MN=AJ

MI//AJ

N\(\in\)MI

Do đó: MN//JA

Xét tứ giác AMNJ có

AJ//MN

AJ=MN

Do đó: AMNJ là hình bình hành

a: Xét ΔABC có

E là trung điểm của BC

F là trung điểm của CA
Do đó: EFlà đường trung bình

=>EF//AB và EF=AB/2(1)

Xét ΔABD có

H là trung điểm của DB

G la trung điểm của AD

Do đó: HG là đường trung bình

=>HG//AB và HG=AB/2(2)

Từ (1) và (2) suy ra HG//FE và HG=FE

b: HE=DC/2

EF=AB/2

mà AB=DC

nên HE=FE

Xét tứ giác EFGH có 

EF//GH

EF=GH

Do đó: EFGH là hình bình hành

mà EH=EF

nên EFGH là hình thoi

24 tháng 11 2023

1:

ΔABC vuông cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=45^0\)

EH\(\perp\)BC tại H

=>EH\(\perp\)HB tại H

=>ΔEHB vuông tại H

Xét ΔHEB vuông tại H có \(\widehat{HBE}=45^0\)

nên ΔHEB vuông cân tại H

FG\(\perp\)BC tại G

=>FG\(\perp\)GC tại G

=>ΔFGC vuông tại G

Xét ΔFCG vuông tại G có \(\widehat{GCF}=45^0\)

nên ΔFCG vuông cân tại G

2: EH\(\perp\)BC

FG\(\perp\)BC

Do đó: EH//FG

EH=HB

HB=HG=GC

GF=GC

Do đó; EH=HB=GH=CG=GF

Xét tứ giác EHGF có

EH//FG

EH=FG

Do đó: EHFG là hình bình hành

Hình bình hành EHFG có \(\widehat{EHG}=90^0\)

nên EHFG là hình chữ nhật

Hình chữ nhật EHFG có GH=GF

nên EHFG là hình vuông

15 tháng 10 2023

a: \(NP\perp BC;MQ\perp BC\)

Do đó: NP//MQ

ΔMQB vuông tại M có \(\widehat{B}=45^0\)

nên ΔMQB vuông cân tại M

=>MQ=MB

ΔNPC vuông tại N có \(\widehat{C}=45^0\)

nên ΔNPC vuông cân tại N

=>NP=NC

NP=NC

MQ=MB

NC=MB

Do đó: NP=MQ

Xét tứ giác MNPQ có

NP//MQ

NP=MQ

Do đó: MNPQ là hình bình hành

mà \(\widehat{PNM}=90^0\)

nên MNPQ là hình chữ nhật

b: Để MNPQ là hình vuông thì QM=MN

=>MB=MN

=>\(MB=MN=NC\)

=>\(MN=\dfrac{BC}{3}\)

Vậy: M,N nằm trên đoạn BC sao cho \(CN=NM=MB=\dfrac{CB}{3}\) thì MNPQ là hình vuông

14 tháng 11 2023

a/

��⊥��MEAB (gt)

��⊥��⇒��⊥��ACABAFAB

=> ME//AF

��⊥��⇒��⊥��ABACAEAC

=> MF//AE

=> AEMF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có �^=90�A=90o

=> AEMF là HCN (hbh có 1 góc vuông là HCN)

b/

Ta có

MF

Xét tg vuông ABC có

MB=MC (gt); MF//AE => MF//AB 

=> AF=BF (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

MF=IF (gt)

=> AMCI là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có 

��⊥��⇒��⊥��MFACMIAC

=> AMCI là hình thoi (hbh có 2 đường chéo vuông góc là hình thoi)

c/

Ta có

AI//CM (cạnh đối hình thoi) => AI//BC => ABCI là hình thang

Xét tứ giác ABMI có

AI//BC (cmt) => AI//BM

MF//AB (cmt) => MI//AB

=> ABMI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Để ABCI là hình thang cân => AB=CI (1)

Ta có

AB=MI (cạnh đối hình bình hành ABMI) (2)

AM=CI (cạnh đối hình thoi AMCI) (3)

Từ (1) (2) (3) => AB=AM=MI=CI

Xét tg vuông ABC có

BM=CM ⇒��=��=��=��2AM=BM=CM=2BC (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> AB=AM=BM => tg ABM là tg đều ⇒�^=60�B=60o

Để ABCI là hình thang cân thì tg vuông ABC có �^=60�B=60o

d/

Xét tứ giác ADBM có

DE=ME (gt)

AE=BE (gt)

=> ADBM là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AD//BM (cạnh đối hbh) => AD//BC

Ta có

AI//CM (cạnh đối hình thoi AMCI)

=> A;D;I thẳng hàng (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

Ta có

AD=BM (cạnh đối hbh ADBM)

AI=CM (cạnh đối hình thoi AMCI)

BM=CM (gt)

=> AD=AI => A là trung điểm DI

chúc bạn học tốt