Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\widehat{ABD}=\dfrac{90^0-\widehat{C}}{2}\)
\(\widehat{ADB}=180^0-\widehat{BDC}=180^0-\left(\widehat{C}+\dfrac{\widehat{B}}{2}\right)=\dfrac{360^0-2\widehat{C}-\widehat{B}}{2}\)
\(\widehat{ADB}-\widehat{ABD}=\dfrac{\left(360^0-2\widehat{C}-\widehat{B}-90^0+\widehat{C}\right)}{2}\)
\(=\dfrac{270^0-\widehat{C}-\widehat{B}}{2}=\dfrac{270^0-90^0}{2}=90^0\)
=>\(\widehat{ADB}>\widehat{ABD}\)
=>AB>AD
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
mà AB<BC
nên AD<CD
Bài 2:
a: \(\widehat{ABD}=\dfrac{90^0-\widehat{C}}{2}\)
\(\widehat{ADB}=180^0-\widehat{BDC}=180^0-\left(\widehat{C}+\dfrac{\widehat{B}}{2}\right)=\dfrac{360^0-2\widehat{C}-\widehat{B}}{2}\)
\(\widehat{ADB}-\widehat{ABD}=\dfrac{\left(360^0-2\widehat{C}-\widehat{B}-90^0+\widehat{C}\right)}{2}\)
\(=\dfrac{270^0-\widehat{C}-\widehat{B}}{2}=\dfrac{270^0-90^0}{2}=90^0\)
=>\(\widehat{ADB}>\widehat{ABD}\)
=>AB>AD
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
mà AB<BC
nên AD<CD
Câu B:
Xét hai tam giác vuông ABD và HBD, ta có:
∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).
Cạnh huyền BD chung
∠BAD = ∠BHD = 90º
Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)
⇒ AD = HD (2 cạnh tương ứng) (1)
Trong tam giác vuông DHC có ∠DHC = 90o
⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)
Từ (1) và (2) suy ra: AD < DC
Kẻ DH⊥BC
Xét ΔABD,ΔHBD
có :
⎧⎩⎨⎪⎪⎪⎪BADˆ=BHDˆ(=90o)BD:chungABDˆ=HBDˆ(AD là tia phân giác của góc B)
⇒ΔABD=ΔHBD(ch−gn)
⇒AD=DH
(2 cạnh tương ứng) (1)
Xét ΔDHC
có :
Hˆ=90o⇒DH<DC
( cạnh góc vuông nhỏ hơn cạnh huyền) (2)
Từ (1) và (2) => DC>AD
a) Xét tam giác ABD và tam giác BDH có: góc B1= góc B2 (do BĐ là pg ABD)
BD cạnh chung
góc ABD= góc BHD( =90 độ)
=> tam giác ABD= tam giác BDH( g.c.g)
=> AD=DH( 2 cạnh tương ứng)
b) mk ki bt làm
c) Xét tam giác BHK vuông tại H có: góc B+ góc HKB= 90 độ( t/c)
Xét tam giác BAC có : góc B+ góc ACB= 90 độ( t/c)
=> góc HKB= góc ACB (cùng phụ vs góc B)
=> góc AKD = góc HCD
Xét tam giác ADK và tam giác HDC có:
góc AKD = góc HCD(cmt)
AD=DH( c/m câu a)
góc KAD= góc DHC( = 90 độ)
=> tam giác ADK= tam giác HDC( g.c.g)
=> AK=HC( 2 cạnh tương ứng)
Mà BA= BH( tam giác ABD= tam giác BDH)
BA+ AK= BK , BH+HC= BC
=> BK=BC
=> tam giác KBC cân tại B( đpcm)
a) Xét tam giacd ABD và tam giác HBD có :
góc ABD = góc HBD ( vì BD là tia phân giác )
BD : cạnh chung
Góc BAD = góc BHD = 90 độ
=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
=> AD = DH ( cặp cạnh tương ứng )
b) Xét tam giác HDC có :
góc DHC = 90 độ ( vì kề bù với góc BHD = 90 độ )
=> DC > DH ( vì DC là cạnh đối diện với góc vuông )
mà AD = DH ( câu a)
=> AD < DC ( đpcm )
c) Vì AB = BH ( vì tam giác ABD = tam giác HBD )
=> tam giác ABH cân
Xét tam giác ADK và tam giác HDC có
AD = DH ( vì tam fiacs ABD = tam giác HBD )
góc KAD = góc CHD = 90
Góc ADK = góc HDC ( đối đỉnh )
=> tam giác ADK = tam giác HDC ( g-c-g )
=> AK = HC ( cặp cạnh tương ứng )
mà AB + AK = BK
BH + CH = BD
Mà AB = BH (cmt )
=> BK = BC
=> tam giác KBC cân (đpcm )
A B C D
Xét hai tam giác vuông DBA và DHB có:
BD là cạnh chung
\(\widehat{ABD}=\widehat{DHB}\)( BD là tia phân giác )
\(\Rightarrow\Delta DBA=\Delta DBH\left(ch-gn\right)\)
\(\Rightarrow AB=DH\)( 2 cạnh bằng nhau )
Tam giác vuông DHC có:
DC là canh huyền suy ra DC là cạnh lớn nhất
\(\Rightarrow DC>DH\)
Mà DH = AD nên AD < DC
*Đảm bảo đúng 100% nhé!! 😊*
Giải:
Dựng DH vuông góc BC (H thuộc BC)
Xét hai tam giác vuông ABD và HBD có:
Góc A = Góc H (=90°)
BD: cạnh chung
Góc ABD = Góc HBD
=> Tam giác ABD = Tam giác HBD (cạnh huyền- góc nhọn)
=> AD = DH (2 cạnh tương ứng)
Xét tam giác vuông DHC vuông tại H có DC là cạnh huyền => DC là cạnh lớn nhất trong tam giác DHC
Do đó: AD = DH > DC (đpcm)
B A E C D Kẻ DE⊥ BC
Xét △ABC và △BDE có: Â=Ê=90*
∠ABD=∠DBE (BD phân giác ∠B)
BD: cạnh chung
⇒ △ABC = △BDE ( cạnh huyền-góc nhọn)
⇒ AD=DE ( 2 cạnh tương ứng)
Xét △EDC có: Ê=90*
⇒ Ê>∠C (theo nhận xét)
⇒ DC>DE (theo quan hệ góc,cạnh đối diện trong tam giác)
mà AD=DE ⇒DC>AD (đpcm)
tu D ve DH vuong goc BC tai H
cm tam giac ABD= tam giac BHD (c=g=c)==> AD= DH
tu diem D den duong thang BC ta co
DH la duong vuong goc, DC la duong xien
---> DH< DC ( quan he duong xien duong vuong goc)
ma DH=AD ( cmt)
nen AD <DC
dung ****
AD<DC chắc chắn