Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E H F
a) Xét \(\Delta\)ABE và \(\Delta\)FBE có :
BF=BA (gt)
\(\widehat{ABE}=\widehat{FBE}\) ( vì tia phân giác góc B )
BE chung (gt)
Do đó \(\Delta\)ABE = \(\Delta\)FBE (c-g-c)
b) Ta có :
ABE = \(\Delta\)FBE (cmt)
=> \(\widehat{EAB}=\widehat{EFB}=90^o\) ( 2 cặp góc tương ứng )
Vậy \(\widehat{EFB}\) = 90o
c) Vì AH \(\perp\) BC nên \(\widehat{AHB}\) = 90o
\(\widehat{EFB}\)=90o ( câu b )
=> \(\widehat{AHB}\) và \(\widehat{EFB}\) là 2 cặp góc đồng vị
=> AH//EF
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Hình (tự vẽ)
a) ΔABE cân
Xét hai tam giác vuông ABH và EBH có:
\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)
HB là cạnh chung.
Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)
⇒ BA = BE (2 cạnh tương ứng)
⇒ ΔABE cân tại B.
b) ΔABE đều
Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.
c) AED cân
Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)
Xét hai tam giác vuông ADH và EDH có:
AH = EH (cmt)
HD: cạnh chung
Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)
⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)
⇒ ΔAED cân tại D
d) ΔABF cân
Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong) (1)
Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)
Thay: 60o + ABF = 180o
⇒ ABF = 180o - 60o = 120o
Xét ΔABF, ta có:
\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)
Thay: 120o + BFA + 30o = 180o
⇒ BFA = 180 - 120 - 30 = 30 (2)
Từ (1) và (2) suy ra: ΔABF cân tại B.
a) Áp dụng tính chất tổng ba góc của một tam giác ta có:
A+B+C=1800
Mà A=900(góc vuông)
C=470
=> B=180-90-47=430
ĐS:.................................
#Châu's ngốc
B A C E H E
a) Xét \(\Delta ABE\)và \(\Delta FBE\)có:
\(BA=BF\left(gt\right)\)
\(\widehat{ABE}=\widehat{FBE}\left(gt\right)\)
\(BE\)là cạnh chung
Do đó \(\Delta ABE=\Delta FBE\left(c.g.c\right)\)
b) Vì \(\Delta ABE=\Delta FBE\)(câu a)
Nên \(\widehat{BAE}=\widehat{BFE}\)(2 góc tương ứng)
Mà \(\widehat{BAE}=90^o\left(gt\right)\)
Nên \(\widehat{BFE}=90^o\)