Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và EBD có:
- AB=BE (gt)
- góc ABD = góc EBD ( BD là phân giác góc B)
- Chung cạnh BD
=> Tam giác ABD = tam giác EBD (c.g.c)
=> DA = DE ( 2 cạnh tương ứng)
HÌNH BẠN TỰ VẼ NHÉ
Tam giác BAD có góc BAD bằng 90 độ => góc ABD + góc ADB =90 độ
lại có: Góc FAD là góc ngoài của tam giác BAD tại đỉnh A
\(\Rightarrow\)góc FAD = góc ABD + góc ADB
= 90 độ
Mật khác: góc BAF = góc BAD + góc DAF
= 90 độ + 90 độ
= 180 độ
=> B,A,F thẳng hàng
Xét ΔABDΔABD và ΔEBDΔEBD, ta có:
AB=BE ( gt)
ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)
BD chung
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)
a: Xét ΔDAB và ΔDEB có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔDAB=ΔDEB
=>góc DEB=90 độ
=>DE vuông góc BC
b: AD=DE
mà DE<DC
nên AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
A B C D E F
a/ Xét \(\Delta ABD\)và \(\Delta EBD\)
BA=BE (gt); BD chung
\(\widehat{ABD}=\widehat{EBD}\)(gt)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/
\(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\Rightarrow DE\perp BC\)
c/
Ta có
BE=BA (gt); AF=CE (gt)
=> BE+CE=BA+AF => BC=BF => tg BCF cân tại B
Mà BD là phân giác \(\widehat{ABC}\)
\(\Rightarrow BD\perp CF\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Mà \(CA\perp BF\)
=> D là trực tâm của \(\Delta BCF\Rightarrow FD\perp BC\) mà \(DE\perp BC\) => FD trùng DE (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => E, D, F thẳng hàng
hình vào tcn cho mình thay G là điểm D vì mình nhầm trọng tâm của tam giác
a) Xét tam giác ABD và tam giác EBD có:
AB=BE (gt)
^ABD=^EBD (^ABD là tia phân giác)
BD chung
=> tam giác ABD = tam giác EBD ( c.g.c )
b) Vì ABC là tam giác vuông tại A
=> tam giác ABD là tam giác vuông tại A
Mà: tam giác ABD = tam giác EBD ( c.g.c )
=> ^BED=^BAD= 90o
=> DE_|_BC (đpcm)
c) Nối F và C lại với nhau
Vì: FA=FB ( gt)
Mà CA_|_FB ( tam giác ABC _|_ tại A)
=> CA là đg trung trực của tam giác ABC
=> CA là đg trung tuyến của tam giác ABC
Mà tia phân giác ABC cắt AC tại D
=> D là trọng tâm của tam giác ABC
=> D,E,F thằng hàng (đpcm)
A B C E D F F'
a)
Xét \(\Delta ABD\) và \(\Delta EBD\) có :
BA = BE ( gt )
\(\widehat{ABD}\) = \(\widehat{EBD}\) ( gt )
BD chung
=> \(\Delta ABD\) =\(\Delta EBD\) ( c . g . c )
=> DA = DE
b)
Kéo dài DE cắt AB tại F' .
Ta c/m được : \(\Delta ADF'=\Delta EDC\left(g.c.g\right)\)
=> DF' = DC
Mà DF = DC
=> D trùng với F'
=> A ; B ; F thẳng hàng .
c)
Dễ dàng c/m BF = BC
=> Tam giác BFC cân tại B
Mà AD là tia phân giác
=> AD cũng là đường cao .