Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ΔABD và ΔEBD có :
BD là cạnh chung
góc ABD = góc EBD (BD là tia phân giác của góc ABE)
BA = BE (gt)
=> ΔABD = ΔEBD (c.g.c)
b, Vì BA = BE (gt) => ΔABE cân tại B
Mà BD là tia phân giác của góc ABE
=> BD là đường cao ứng với AE (t/c)
=> BD ⊥ AE tại H
c, Vì BD // AK (gt) => góc BDA = góc DAK ( So le trong)
Vì BD // AK (gt) => góc EBD = góc ADK ( Đồng vị)
Mà góc BDA = góc EBD
=> góc DAK = góc ADK
=> ΔADK cân tại D
=> DA = DK
mà DA = DE
=> DK = DE
=> D là trung điểm của EK (điều phải chứng minh)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a) xét \(\Delta\)ABD và \(\Delta\)EBD có:
BA = BE (gt)
BD chung
góc ABD = góc EBD (BD là p/g của góc ABC)
=> \(\Delta\)ABD = \(\Delta\)EBD (c.g.c)
b) xét \(\Delta\)ABH và \(\Delta\)EBH có:
BA = BE (gt)
góc ABD = góc EBD (BD là p/g của góc ABC)
BH chung
=> \(\Delta\)ABH = \(\Delta\)EBH (c.g.c)
=> góc BHA = góc BHE (2 góc tương ứng)
mà góc BHA + góc BHE = 180 độ (2 góc kề bù)
=> góc BHA = góc BHE = \(\dfrac{180^0}{2}=90^0\)
=> BD \(\perp\) AE