Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)
b) Xét \(\Delta ABM\) vuông tại A và \(\Delta KBM\) vuông tại K:
\(BMchung.\)
\(\widehat{ABM}=\widehat{KBM}\) (BM là phân giác góc ABC).
\(\Rightarrow\Delta ABM\) \(=\Delta KBM\left(ch-gn\right).\)
\(\Rightarrow AB=KB.\)
\(\Rightarrow\Delta ABK\) cân tại B.
c) Xét \(\Delta ABK\) cân tại B:
\(\widehat{AKB}=\dfrac{180^o-\widehat{B}}{2}\left(1\right).\)
Xét \(\Delta BDC:\)
DK là đường cao \(\left(DC\perp BC\right).\)
CA là đường cao \(\left(CA\perp AB\right).\)
Mà M là giao điểm của DK và CA.
\(\Rightarrow\) M là trực tâm.
\(\Rightarrow\) BM là đường cao.
Xét \(\Delta DBC:\)
BM là đường cao (cmt).
BM là đường phân giác (gt).
\(\Rightarrow\Delta DBC\) cân tại B.
\(\widehat{DCB}=\dfrac{180^o-\widehat{B}}{2}\left(2\right).\)
Từ (1) (2) \(\Rightarrow\text{}\text{}\widehat{AKB}=\widehat{DCB}.\)
\(\Rightarrow AK//CD.\)
a) Xét ΔABCΔABC vuông tại A:
BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).
b) Xét ΔABMΔABM vuông tại A và ΔKBMΔKBM vuông tại K:
BMchung.BMchung.
ˆABM=ˆKBMABM^=KBM^ (BM là phân giác góc ABC).
⇒ΔABM⇒ΔABM =ΔKBM(ch−gn).=ΔKBM(ch−gn).
⇒AB=KB.⇒AB=KB.
⇒ΔABK⇒ΔABK cân tại B.
c) Xét ΔABKΔABK cân tại B:
ˆAKB=180o−ˆB2(1).AKB^=180o−B^2(1).
Xét ΔBDC:ΔBDC:
DK là đường cao (DC⊥BC).(DC⊥BC).
CA là đường cao (CA⊥AB).(CA⊥AB).
Mà M là giao điểm của DK và CA.
⇒⇒ M là trực tâm.
⇒⇒ BM là đường cao.
Xét ΔDBC:ΔDBC:
BM là đường cao (cmt).
BM là đường phân giác (gt).
⇒ΔDBC⇒ΔDBC cân tại B.
ˆDCB=180o−ˆB2(2).DCB^=180o−B^2(2).
Từ (1) (2) ⇒ˆAKB=ˆDCB.⇒AKB^=DCB^.
⇒AK//CD.
A B C H M K
Xét t/giác ABM và t/giác HBM
có AB = BH (gt)
\(\widehat{ABM}=\widehat{HBM}\)(gt)
BM : chung
=> t/giác ABM = t/giác HBM (c.g.c)
b) Do t/giác ABM = t/giác HBM (cmt)
=> \(\widehat{BAM}=\widehat{BHM}=90^0\) (2 góc t/ứng)
=> HM \(\perp\)BC
c) Xét t/giác AMK và t/giác HMC
có \(\widehat{KAM}=\widehat{MHC}=90^0\)
AM = MJ (do t/giác ABM = t/giác HBM)
\(\widehat{AMK}=\widehat{HMC}\)(đối đỉnh)
=> t/giác ẠMK = t/giác HMC (g.c.g)
=> MK = MC (2 cạnh t/ứng)
=> t/giác KMC cân tại M
c) Ta có: BA + AK = BK
BH + HC = BC
mà AB = BH (gt); AK = HC(do t/giác ABM = t/giác HBM)
=> BK = BC => t/giác BKC cân tại B
=> \(\widehat{K}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) (2)
Ta có: AB = BH(gt) => t/giác BAH cân tại B
=> \(\widehat{BAH}=\widehat{BHA}=\frac{180^0-\widehat{B}}{2}\)(1)
Từ (1) và (2) => \(\widehat{K}=\widehat{BAH}\)
Mà 2 góc ở vị trí đồng vị => AH // KC
A B C 6 10 D H K
a, Xét \(\Delta ABC\)VUÔNG tại A
Áp dụng định lý pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-6^2\)
\(\Rightarrow AB^2=100-36\)
\(\Rightarrow AB^2=64\)
\(\Rightarrow AB=\sqrt{64}=8\)
VẬY AB=8 cm
b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:
\(\widehat{BAD}=\widehat{BHD}=90độ\)
\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)
\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)
c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)
\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)
lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)
\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)
\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)
Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:
\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))
BD là cạnh chung
\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)
Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)
\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta KBC\) cân tại B
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có
BM chung
góc ABM=góc KBM
=>ΔBAM=ΔBKM
c: AM=MK
MK<MC
=>AM<MC
d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có
MA=MK
góc AMD=góc KMC
=>ΔMAD=ΔMKC
=>AD=KC
Xét ΔBDC có BA/AD=BK/KC
nên AK//DC