K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

Thực ra nó đúng với mọi tam giác \(ABC\) chứ không cần phải vuông đâu.

A B C D F M X K I

Ta vẽ \(CK⊥AI\) tại \(K\).

Bước 1: CM \(K,M,X\) thẳng hàng.

Do \(KM\) là trung tuyến của tam giác vuông \(AKC\) nên \(\widehat{KMC}=2\widehat{KAC}=\widehat{BAC}\).

Tức là \(KM\) song song với \(AB\).

Lại thêm \(MX\) song song với \(AB\) nên theo tiên đề Euclide thì \(K,M,X\) thẳng hàng.

Bước 2: CM \(K,D,F\) thẳng hàng.

\(IDKC\) nội tiếp nên \(\widehat{KDC}=\widehat{KIC}=\frac{1}{2}\left(\widehat{BAC}+\widehat{C}\right)=\frac{1}{2}\left(180^o-\widehat{B}\right)=\widehat{FDB}\)

(Dấu bằng cuối cùng là do tam giác \(FDB\) cân tại \(B\)).

Từ \(\widehat{KDC}=\widehat{FDB}\) chứng minh được \(K,D,F\) thẳng hàng.

Vậy \(DF,AI,MX\) đồng quy.

22 tháng 12 2016

(Đề hay quá!)

Gọi \(X\) là trung điểm \(BC\). CM được \(DF,AI,MN\) đồng quy tại điểm ta gọi là \(K\).

Theo tính chất đường trung bình ta có \(MN\) song song \(AB\).

Do tam giác \(ABC\) vuông tại \(A\) cũng suy ra \(AB\) song song với \(IE\).

Áp dụng định lí Thales liên tục ta có:

\(\frac{AN}{IE}=\frac{MN}{MI}=\frac{KA}{KI}=\frac{AP}{ID}\).

Do \(ID=IE\) nên \(AN=AP\). Kết thúc chứng minh.

22 tháng 12 2016

ê,chứng minh AI,DF,MX đồng quy kiểu gị ?

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

11 tháng 12 2018

a, Tứ giác BDQH nội tiếp vì  B D H ^ + B Q H ^ = 180 0

b, Vì tứ giác ACHQ nội tiếp =>  C A H ^ = C Q H ^

Vì tứ giác ACDF nội tiếp  =>  C A D ^ = C F D ^

Từ đó có  C Q H ^ = C F D ^  mà 2 góc ở vị trí đồng vị => DF//HQ

c, Ta có  H Q D ^ = H B D ^  (câu a)

H B D ^ = C A D ^ = 1 2 s đ C D ⏜

C A D ^ = C Q H ^  (ACHQ cũng nội tiếp)

=>  H Q D ^ = H Q C ^ => QH là phân giác  C Q D ^

Mặt khác chứng minh được CH là phân giác góc  Q C D ^

Trong tam giác QCD có H là giao của ba đường phân giác nên H là tâm đường tròn nội tiếp => H cách đều 3 cạnh CD, CQ, DQ

d, Vì CMFN là hình chữ nhật nên MN và CF cắt nhau tại trung điểm của mỗi đường.

Trong tam giác FCD có MN//CD và MN đi qua trung điểm CF nên MN đi qua trung điểm DF

Mặt khác AB đi qua trung điểm của DF nên 3 đường thẳng MN, AB, DF đồng quy

20 tháng 2 2022

bạn giải thích lại giúp mình câu b được không ạ? tại mình không hiểu câu đó lắm, mình cảm ơn!