Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔACB cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)
nên \(\widehat{ABC}=\widehat{FCN}\)
Xét ΔEBM vuông tại M và ΔFCN vuông tại N có
BM=CN
\(\widehat{EBM}=\widehat{FCN}\)
Do đó: ΔEBM=ΔFCN
=>EM=FN
b: ED//AC
=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EDB}=\widehat{ABC}\)
=>\(\widehat{EBD}=\widehat{EDB}\)
=>ΔEBD cân tại E
ΔEBD cân tại E
mà EM là đường cao
nên M là trung điểm của BD
=>MB=MD
c: EM\(\perp\)BC
FN\(\perp\)BC
Do đó: EM//FN
Xét ΔOME vuông tại M và ΔONF vuông tại N có
ME=NF
\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)
Do đó: ΔOME=ΔONF
=>OE=OF
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
xét\(\Delta NAM\)và\(\Delta NCM\)vuông tại M có
AM=MC(M là trung điểm AC)
MN chung
=>\(\Delta NAM=\Delta NCM\)(cgv-cgv)
-ta có\(\widehat{B}=90^0-\widehat{C}\)(1)
\(\widehat{BAN}=90^0-\widehat{NAC}\)hay\(\widehat{BAN}=90^0-\widehat{C}\)(\(\widehat{NAC}=\widehat{C}\)(\(\Delta NAM=\Delta NCM\)))(2)
từ(1)và(2)=>\(\widehat{B}=\widehat{BAN}\)=>\(\Delta NBA\)cân tại A=>NA=NB mà NA=NC\(\left(\Delta NAM=\Delta NCM\right)\)
-xét \(\Delta BCE\)có
CM là đường trung tuyến ứng với cạnh BE(MB=ME=>M là trung điểm của BE) và EN là đường trung tuyến ứng với cạnh BC(NB=NC=>N là trung điểm của BC)
mà CM cắt EN tại G=>G là trộng tâm của \(\Delta BCE\)
=>CG=2GM(đpcm)