K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

xét tam giác BDC có góc BDC+ góc C+ góc DBC=180 độ 

mà góc CDB+ góc ACB=90 độ 

suy ra góc DBC =90 độ

suy ra tam giác DBC vuông tại B có đường cao AB( vì tam giác ABC vuông tại A)

Áp dụng hệ thức lượng vào tam giác DBC ta có:

1/BC^2+1/BD^2=1/AB^2( ĐPCM)

25 tháng 2 2022

Ủa, sao mỗi mình lớp 2?

a Xét ΔABM và ΔADM có 

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

b: Ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

Suy ra: KB=KD

24 tháng 1 2019

tự vẽ hình nhé

a, xét tam giác abd và tam giác ace có

ab=ac(gt)

góc abd=góc ace(tam giác abc cân)

bd=ce(gt)

=>tam giác abd =tam giác ace (cgc)

=>ad=ae(2 cạnh tg ứng)

b,xét tam giác bdf và tam giác ceg có

bd=ce(gt)

góc fbd=góc gce(tam giác abc cân, f thuộc ab,g thuộc ac)

=>tam giác bdf=tam giác ceg(cạnh huyện góc nhọn)

=>

25 tháng 4 2016

a) Ta có: BA = BD (Gt)

=> Tam giác BAD cân tại B

=> góc BAD = góc BDA (đpcm)

b) Ta có: góc HAD + góc HDA = 90(tam giác ADH vuông tại H)

              góc DAC + góc DAB = 900 (tam giác ABC vuông tại A)

Mà góc HDA = góc DAB (cm a)

=> 900 - HDA = 90- DAB

hay góc HAD = góc DAC    (1)

Mà AD nằm giữa AH và AC    (2)

Từ (1) và (2):

=> AD là phân giác của góc HAC (đpcm)

c) Xét tam giác AHD và tam giác AKD có:

                    góc H   =  góc K (=900)

                       AD    =   AD (cạnh chung)

                  góc HAD = góc DAC ( cm b)

    Vậy tam giác AHD = tam giác AKD (ch-gn) (đpcm)

                       => AH = AK (cạnh tương ứng) (đpcm)

d) Đang nghĩ

25 tháng 4 2016

d) Xét tam giác DKC có: góc K = 900

=> Cạnh DC lớn nhất

==> KC + AK + BD < DC + BD + AK (vì KC < DC)

==> AC + BD < BC + AK ( do KC + AK = AC; DC + BD = BC)

Mà: AB = BD (Gt)

      AK = AH (cm c)

=> AC + AB < BC + AH 

Mà BC + AH < BC + 2AH

==> AB + AC < BC + 2AH (đpcm)

a: Xét ΔAMB và ΔAMD có

AM chung

MB=MD

AB=AD

Do đó: ΔAMB=ΔAMD

b: ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔKBE và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKBE=ΔKDC

Suy ra: \(\widehat{BKE}=\widehat{DKC}\)

=>\(\widehat{BKE}+\widehat{BKD}=180^0\)

hay E,K,D thẳng hàng