K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

Tia HE ở đâu đấy bạn. Sao lại kẻ phân giác BE( E thuộc BC)

Nhần đề bài à ???

2 tháng 5 2018

Ặc mình thiếu. Thêm kẻ EH vuông góc với BC ( H thuộc BC)

Sr nha!😘

17 tháng 4 2016

a) Ta có ^BEA = 90 - ^ ABE

             ^BEH = 90 - ^EBH 

mà ^ABE = ^EBH ( do BE là tia phân giác)

=> ^BEA=^BEH

Xét tam giác ABE và Tam giác HBE có

           ^ABE=^BEH (gt)

            BE chung 

            ^BEA=^BEH (cmt)

=> tam giác ABE=Tam giác HBE

b) chỉ cần chứng minh BE là đườn trug tuyến là xog

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

EB chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH; EA=EH

=>EB là trung trực của AH

c: EA=EH

mà EA<EK

nên EH<EK

d: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

mà BE là phân giác

nen BE vuông góc KC

bạn có thể cho mh xem hình được k

 

17 tháng 5 2018

a) Xét tam giác ABE vuông tại A và ta giác HBE vuông tại H

có: BE là cạnh chung

góc ABE = góc HBE (gt)

\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)

=> AE = HE ( 2 cạnh tương ứng)

Xét tam giác AEM vuông tại A và tam giác HEC vuông tại H

có: AE = HE ( cmt)

góc AEM = góc HEC ( đối đỉnh)

\(\Rightarrow\Delta AEM=\Delta HEC\left(cgv-gn\right)\)

=> EM = EC ( 2 cạnh tương ứng)

c) Gọi BE cắt CM tại K

ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)

=> AB = HB ( 2 cạnh tương ứng) (1)

ta có: \(\Delta AEM=\Delta HEC\) ( chứng minh phần b)

=> AM = HC ( 2 cạnh tương ứng) (2)

Từ (1);(2) => AB + AM = HB + HC

                => BM = BC (*)

Xét tam giác BMH vuông tại H

có: BM > MH ( quan hệ cạnh huyền, cạnh góc vuông) (**)

Từ (*), (**) => BC>MH

mk ko bít kẻ hình trên này, sorry bn nha!

      

a) Xét  ΔABD và ΔEBD:

+) AB = BE

+) DB chung

+) ˆABD=ˆEBDABD^=EBD^  (Vì BD là phân giác)

Suy ra: ΔABD=ΔEBD (c.g.c)

- Suy ra DA = DE và DE ⊥⊥ BC

Tam giác EDC có: EC > CD – DE = CD – DA

Suy ra BC – BA > CD – DA

Có AH // DE ⇒ˆHAE=ˆAED⇒HAE^=AED^ (SLT)

Tam giác ADE cân ⇒ˆDAE=ˆAED⇒DAE^=AED^

Suy ra AE là phân giác của ˆHAC^

Kẻ EF ⊥ AC ⇒⇒ ΔAHE=ΔAFE (1)

Tam giác EFC vuông tại F ⇒ EC > EF   (2)

Từ (1) và (2) ⇒ EC > HE.

P/s : hình thì tự vẽ :v